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1. Introduction

This final report summarizes the work performed under the AFOSR grant
number AFOSR-89-0072, originally entitled "Equilibria, Lattices, and Chaotic
Dynamics of Point Vortices". The aim of the proposed research effort involved
theoretical work, both analytic and numerical, on a number of different
problems which were all loosely tied together as involving some aspect of vortex
systems, and their relation to chaos in fluid flows. Significant results were
obtained during this funding period in several major topics. The first topic
which was investigated was a continuation of the authors previous work on
vortex lattices. Resulis consisted of the refinement of the analytic expression for
the lattice summation of an infinite lattice of point vortices, and use of this
expression o calculate the allowed lattice structures of the two-component
triangular lattice. It was also shown how these expressions can be used to
calculate the bulk physical properties of vortex lattices, by calculating the energy
of slip displacement for the triangular lattice.

A second major topic which was researched during this period was the
investigation of chaotic motion in fluid flows due to vortex dynamics. One
aspect which was investigated was to demonstrate the presence of low
dimensional chaos in an actual experimental open flow. This work used
experimental data from the erratic fluid flow downstream of a cylinder, obtained
from INLS's fluids lab, and utilized a new technique developed by the author for
measuring the dimension of a chaotic system from a time series. The motion was
found to have an apparent dimension of four, which agrees with an alternative
model of the system. Another problem involving chaos due to vortices was an
analytic and numerical investigation of the motion resulting from the interaction
of a vortex in an open flow and a stationary bluff body, with small sinusoidal
perturbation. It was found that, for the proper parameter regimes, the passing
vortex could actually be ‘chaotically trapped' around the body for significant
periods of time. This behaviour is a relatively new phenomenon and one of
possibly large significance.

Finally, motivated by an interest in measuring and describing low-
dimensional chaos in vortex and fluid flows in general, a significant amount
results were obtained in the general theory of nonlinear analysis. An extensive
method was developed for prediction of chaotic motion based on a global,
functional description of the attractor, and utilizing only a time series of data as




input. This method was found to have superior predictive ability over most
commonly used methods. Another significant result was the development of a
new method for the determination of the minimum embedding dimension
necessary to reconstruct the attractor for a system. This method is an entirely
new approach based on information theory, and offers an alternative technique to
the ubiquitous Grassherger-Procaccia algorithm (its initial uses were to analyze
the experimental data mentioned above). In addition to these two major
projects, results were also obtained in work done on the investigation of a new
type of dynamical mapping, which has interesting property of being locally
conservative but globally dissipative. Lastly, work was begun and is still
ongoing in developing a new method for calculating the lyapunov exponents of a
chaotic system from a time series of data, in the presence of additive guassian
noise.

In all, work performed during the funding period has resulted in three
published papers, two papers currently in review, and two papers in preparation
(all of these are included as appendices). Versions of the pre-prints and
published papers will be supplied as they become available.
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II. Vortex Lattices

This section describes analytic and numerical work done in the calculation
of the lattice summations for the energy of a two-dimensional, infinite lattice of
point vortices. This work was done in collaboration with L.J.Campbell and
M.M.Doria of Los Alamos National Laboratory, and Physical Review
publication resulting from this work appears as Appendix A.

The calculation of properties (such as the energy density) for infinite
lattices with Coulomb interactions has a long history. In particular, the two-
dimensional case which arises from lattices of point vortices is an example of this
problem, as both satisfy a logarithmic potential, and with the only difference
being that of the resulting dynamics. Vortex lattices are of importance both
because of their mathematical properties, as well as being reasonable models for
superfluid helium systems, systems of line charges or :urrents, screw
dislocations in crystals, vortex-like interactions in the quantum hall effect, and
most recently as a mechanism for 'high Tc' superconductors. Until the present
work, no closed form expression existed for these lattice summations, although
there had been several attempts to derive them(see references in Appendix A).
Numerical simulations thus consisted only of clever ways to do the summations
explicitly.

The principle result of the work discussed here is the development of an
expression for the energy density of a lattice of point vortices in terms of a very
rapidly convergent product expansion. Although a more primitive form of the
summation was developed prior to this funding period, these results represent a
considerable improvement in the formalism involved, as well a a more sound
understanding of the physical interpretation. In particular, the correct form of
the normalization was finally understood, as well as a more general
understanding of the form and interpretation of the artificial neutralizing
background one must add to cancel the mathematical singularities involved in the
infinite summation (see the introduction in Appendix A). The final results of
this reformulation is summarized in Eq.21 of Appendix A; th's equation gives
the energy density of of a lattice of vortices with given species of vortices of
given strengths. This equation allows for any arbitrarily shaped, four-sided unit
cell and also for arbitrary numbers and strengths of vortices. The correct
normalization now allows for the correct comparison between different lattices
with similar number densities for different species. Since derivatives and other




operations can easily be performed on the expression, it is also suitable for the
calculation of bulk properties of the lattices and even to investigate lattice
dynamics. In its present form this expression is directly applicable to a wide
variety of problems associated with this type of logarithmic-potential lattice, such
as those mentioned above.

In addition to the above results, this formulation was then used to obtain
several new results for vortex lattices. Previously, only properties of the single-
species, single-vortex square and triangular lattices could be calculated. Section
IV of Appendix A presents the lattice shapes allowable for several new varieties
of vortex lattices. These shapes are all calculated by similar means: minima of
the lattice energy density are found by sweeping through the lattice parameters,
and actual lattice configurations are assumed to exist for these mirima. Section
IV shows several new lattice structures, and gives some of the lattice energies,
for which the energy of the square and triangular lattices is verified. It should
be noted that many other new configurations of various types of lattices have
been generated, and that only the two dimensional case has been presented in the
paper. Other configurations may eventually be published elsewhere.

Finally, some results were obtained on the calculation of some bulk lattice
properties using the energy density formulation. The property of significant
physical interest for the lattices of this particular type was the energy of slip
displacement. This energy in effect measures the 'rigidness' of the lattice to
deformation along one of its principal directions. Figure 3 of Appendix A
presents a summary of numerical calculations done to measure the energy of slip
displacement for a triangular vortex lattice. Calculations of this type were
entirely impossible previously. This calculation is also primarily useful as an
example of the practicality of Eq.21 for the calculation of a wide variety of
properties associated with logarithmic-potential lattices.

It should be noted that although the author has not pursued work on this
project much beyond what is presented here, L.J.Campbell has demonstrated the
importance of these results by continuing to apply this formalism to a number of
outstanding problems, in particular some aspects relating to models of high Tc
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III. Vortex Chaos

A. 'Chaotic Trapping' in Open Flows

This section describes work in progress which has been ongoing for
approximately one year, and which has been done in collaboration with
E.A.Novikov of INLS, UCSD. The original analytic foundation for the work
appears in a short pre-print by Novikov, and in this continuation of the work this
author has completed an extensive numerical study which will shortly appear in
pre-print form, and which contains new and significant results concerning the
interaction of vortices with bluff bodies in open flows. Examples of the
numerical results appear in Appendix B, as well as Novikov's original pre-print
to include background discussion (some of these numerical results were also
recently presented in a talk at SIAM's Dynamical Systems conference in Orlando,
May 1990 ).

The underlying model for this investigation is that of a bluff body (in this
case a two-dimensional cylinder) in a uniform two-dimensional flow, with a
single vortex passing by and interacting with the cylinder. To this system is
added a small perturbation which consists of sinusoidal vibration of the body
along the flow direction. This system is a simple and general model for a
vortex-like structure interacting with a body in an open flow, for which there
are many physical analogous; the most obvious of these is that of a tornado
interacting with structures such as large buildings. In the case of zero
perturbation, the vortex trajectories, and hence the topology of the flow field,
can be solved exactly (see Appendix B). However, for finite perturbation and
the proper parameter regimes, Novikov has shown analytically that one can
generically expect chaotic motion of the vortex to emerge. This chaotic motion
results in several consequences, the first and most obvious of which is that the
resulting vortex trajectory is unpredictable and extremely sensitive to initial
conditions. Hence the direction of scatter of the impinging vortex is highly
erratic with respect to initila position. A consequence of this is another
important phenomenon, namely that of 'chaotic trapping' (a related phenomenon
has been introduced previcasly in gravitational interactions by M.Henon). This
phenomenon consists of vortex motion for which the vortex approaching from
infinity can become trapped in rotational motion around the body for a (finite)
period of time, and then escape again. The trapping is a result of the vortex
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being caught in the stochastic layers around the flow separatrix, which is
generated by the perturbation. Because this resulting motion is chaotic, the
rotational motion of the trapped vortex can in turn result in large pressure
differences on the boundary of the body. This phenomenon is apparently new,
and because the model predicts that this is the generic state for finite perturbation
of such systems, this phenomenon should be recognizable in physical systems as
well. Speculation is that this behaviour may be related to the destructive ability
of tornadoes, as well as that-of the highly dangerous downdrafts which
sometimes occur around airports. In addition to these physical applications, the
system is also of considerable interest as perhaps the simplest model of an open
flow system which exhibits such rich chaotic behaviour.

The numerical investigations of the above system have produced a large
body of results which indicate an even richer behaviour than was suggested by
the analytic analysis. The first major result was the study of the variation of the
topology of the flow field, with zero perturbation, as the dimensionless
parameter © of the dynamical equation is changed (sze paragraph 5 of the
Novikov preprint). Roughly, this parameter measures the ratio of the vortex and
flow field strengths. To study the variation of topology, the positions of the
stable and unstable stagnation points of the flow were found for the entire range
of ¢, using computer algebra and solving numerically for the roots. Once
distinct regimes for the root positions were identified, the flow fields were
mapped out by integrating the dynamical equations. Using this method, twelve
distinct topologies were identified for the unperturbed flow, far richer than was
first suspected. These topologies are outlined and included in Appendix B. The
majority of these topologies are capable of exhibiting stochastic regions, and
hence trapping phenomena. In addition, Case 3 of these topologies indicates a
stagnation point whose character is a mixture of hyperbolic and elliptic, which
may itself be a new type of structure in Hamiltonian flows.

The second important result of the numerical investigations was the
verification of the existence of the chaotic-trapping phenomenon. Since the size
of the stochastic region, and hence the probability of trapping, is moderately
dependent upon the frequency of the perturbation, the Mclnikov integral for the
system was computed numerically to determine the frequency range
corresponding to large stochastic regions., Using different values within this
parameter regime, a large number of trajectories were found, by numerical
integration, which exhibited trapping behaviour. Two typical examples are




shown in Appendix B. Trajectories were found which became trapped,
performed as many as twenty erratic revolutions around the body, and then
escaped. Within the proper parameter regimes, the measure of initial conditions
resulting in trapped trajectories seems to be quite significant, as these trajectories
were relatively easily found.

Related to the above phenomenon, a third interesting result was obtained
for this system. For the case where a stable and unstable stagnation point lie
somewhat near the boundary of the body and on the sanie side, trajectories were
found where the vortex could actually first become trapped around the body,
then around the elliptic point, and then often switch back and forth several times.
These 'switching' trajectories have been observed for several initial conditions,
and seem to be a somewhat unusual and counter-intuitive result. An example of
such a switching trajectory is also shown in Appendix B.

Finally, for a few cases of different parameter values, Poincare sections of
the vortex motion for specific trapping trajectories were taken. This was done
solely to aid in gaining intuition about the structure and appearence of the
stochastic layers which cause the trapping phenomenon itself. An example of one
of these sections is included in Appendix B. Although not of direct relevance to
the analysis discussed above, this type of chaotic analysis will be the subject of a
future more detailed investigation.

Future work on this project is planned to be quite extensive. Several
numerical experiments are planned to characterize the stochastic nature of the
system, including determining the measure of initial conditions which result in
trapping trajectories (it is suspected that this may result in a 'devil's staircase' ),
measuring time series of boundary pressure on the body for trapping
trajectories, and further Poincare analysis. Beyond that, the system wiil be
generalized by considering vortex-dipole interactions with the body, more
general boundary geometries, and alterations of the model to make it more
applicable to specific physical systems.




B. Low-Dimensional Chaos in an Open Flow Experiment

In the original proposal for this work, it was mentioned that the possibility
existed of developing new results for the generalized von Karman street as a
better model of the wake of an open flow past a bluff body. Although new
analytic results could not be obtained, an investigation was done of some
experimental data of such a flow, which seemed to exhibit a chaotic nature. The
principle tool for the analysis was a new technique for determining the minimum
embedding dimension of a chaotic signal, developed in part by the author and
which is separately presented in this document in Section IV. Using this method,
the region of the flow investigated was found to be chaotic with a4 dimensionality
of four, which also agrees with a first order model proposed for the system. A
summary of these results are given on page eight of the pre-print 'Information
Theoretic Methods for Determining Minimum Embedding Dimensions of
Strange Attractors', which is included in Appendix E. As with the previous
section, this work is still in progress, and a more extensive and cooperative
effort is planned to identify low-dimensional chaos in various aspects of these
flows.

The experiment from which the data was obtained was performed by
M.Gharib and K.Lewis at the DARPA/URI fluid dynamics laboratory at INLS,
UCSD. A detailed description of the experiment will appear as a pre-print in the
near future. Briefly, two thin rotating cylinders of slightly different radius are
placed end-to-end and perpendicular to an otherwise uniform flow field. Both
cylinders generate vortices in their downstream wake, however the mismatch in
radii causes an unstable interaction which results in low-dimensional chaos in the
flow near the boundary of the two regions. A photograph of the flow, supplied
by K.Lewis, for a typical experimental run is shown in Appendix C, as are a
time series and FFT for the chaotic region.

The MDL technique for measuring minimum embedding dimension was
used on a set of several different time series from these experiments, in an
attempt to determine whether this flow was indeed low-dimensional chaos (this
method is described more fully in Section IV). It should be noted here that the
conventional method for determining embedding dimension, ie. the Grassberger-
Procaccia algorithm, yielded inconsistent results for this particular system, and
this was one of the primary motivations for the use of the new MDL algorithm
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to analyze this data. After considecrable analysis, it was shown that this flow
typically seemed tc have a dimensionality of four, although the dimension could
be as high as six for some parameter regimes. A plot of the MDL function for a
typical data series is also shown in Appendix C, showing the minimum of the
MDL function occuring at a dimension of four. Since Gharib and Lewis have
proposed a model for the chaotic region based on coupled duffing oscillators,
which should also have an expected diemnsionality of four, these results seemed
to confirm this conclusion.

Although work on this project is still ongoing and results are somewhat
preliminary, this investigation could prove very significant as an excellent
example of low-dimensional chaos in a flow which can be demonstrated ]
experimentally, analytically, and through nonlinear time series analysis. Future ]
work is also planned, in cooperation with researchers in the DARPA fluids lab,
which will involve a similar analysis in an attempt to look for low-dimensional
chaos in the velocity and acoustic fields of a submerged jet.
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IV. Measurement and Prediction in Chaotic Systems

Because of the authors interest in investigating chaos in vortex flows and
in fluid flows in general, there was considerable motivation during this project to
study the varinus methods for measuring, characterizing, and predicting chaotic
behaviour in flows, in particular those resulting in time series from actual
physical systems. It was generally found that, although idealized methods for
analyzing chaotic motions were well established, application of these techniques
to real physical data, which often include significant levels of noise, was often
very poor. A significant amount of effort during this funding period was
therefore devoted tc investigating and developing improvements in these
techniques, which would be more robust to the problems associated with reai
data (ie. noise, short data sets, irregular sampling of data, etc. ). These new
techniques were investigated with an eye towards increasing the analytic abilities
for experiznental data, especially that being generated at the DARPA UCSD
fluids laboratory. This work during the past 1 1/2 years has resulted in two new
and powerful methods for the analysis of chaotic data from actual physical
systems, and has produced two published papers and one paper currently in
review. These two methods are outlined below.

A. Global Prediction for Dissipative, Chaotic Systems

Most methods of analysis for chaotic systems involve the
measurement of several physical properties which are known to indicate chaotic
motion, such as the dimension, the lyapunov spectrum, etc. Once these quantities
are determined, the obvious next step should be to use these quantifiers for
model selection, signal processing, prediction, and the like. Surprisingly, only a
handfui of papers exist which attempt to develop any of these applications, and
very few serious efforts to analyze actual data have been dene. The work
described below, dore in collaboration with H.D.I.Abarbanel and R.Brown of
INLS, UCSD, was an attempt to develop a general method for modelling a
chaotic systems' flow in phase space by simultaneously untilizing as much
dynamical information as possible, in the most efficient way, and then utilizing
this information for prediction. Prediction in this sense means the generalized
forward extrapolation of short segments of phase space trajectories, which can
then be used for actual prediction or for signal processing, noise reduction, etc.
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The results of this investigation grew into a somewhat extensive general
methodology, which is described in the two papers included here as Appendix D.

To give a brief overview of the method, the basic idea starts by
reconstructing a chaotic systems' attractor in phase space from a time series
using time-delay embedding and the standard methods to determine the
embedding dimension and the autocorrelation time. The general procedure is to
model the local flow on the attractor by a mapping function which uses the
information of where nearby neighboring points on the attractor are mapped to.
This function can then be used to predict where a new point on the attractor will
evolve. In the formulation and the numerical algorithms which were developed,
a general form of the mapping function is used with the important properties that
it is global, in the sense that only one function is used over the entire attractor,
and secondly that the function is well defined analytically, so that for example
gradients can be computed and local derivatives can be used for parameter
fitting. Specific information about the given dynamical system is then built into
the mapping function in the following way: the mapping function contains
parameters which weight the way local information on the attractor is used, such
as the number of neighbors to include, the number of previous iterates to
include, the length scale involved, etc. The correct parameters that glebally
describe the particular attractor are then found by nonlinear least-squares fitting
of the function to the data set taken from the dynamical system. The correct
parameters are then chosen as those which optimally reproduce the given data set
from the system.

Perhaps the most important aspect of this method is the inclusion of
additional dynamical information about the system in the mapping function. In
addition to the dimension, there also exist other important quantifiers of the
character of the chaotic motion which can be extracted from the time series data.
These include the lyapunov spectrum of exponents, and the probability density of
orbits on the attractor. These quantities are measured from the time series using
standard algorithms, and are then also built into the mapping function in the
following manner: the functional values that these quantifiers should yield for the
given mapping are derived from it by taking gradients and using appropriate
definitions. When the nonlinear least-squares parameter fitting is being done, the
map is simultaneously constrained to also reproduce the appropriate values of the
dynamical quantifiers. Examples of the results of this type of constrained
optimization are given in both papers in Appendix D. The point of this is that




the resulting map now reproduces not only the data to some accuracy, but also
reproduces the correct dynamical characteristics of the system. It is therefore
expected that this constrained fit for the function will prove to be a more
accurate predictor of the actual motion of the system.

Extensive testing and development of this idea have generally shown that
this type of constrained parameter fitting seems to produce considerably superior
predictive power than that of other less sophisticated techniques. Results of this
work have generally shown (see Appendix D) that it is possible to find global
mapping functions which reproduce time series data to an excellent degree (
0.5% average rms error or better ) and which are also capable of accurately
reproducing the dynamical quantifiers, and hence have the same chaotic
invariants, as the original system. Additionally, numerical experiments with the
reproduction of known trajectories have shown that this type of predictor can
accurately predict orbits significantly farther than the majority of other known
methods, with shadowing trajectories for example staying close to the original
Henon trajectorics for as long as seven or eight iterations. In addition, this
method seems better suited than most methods to actual experimental data, which
may include significant noise components, because of the inherent averaging of
the local phase space flow which occurs via the mapping function.

Although much of the work on this technique is completed, it has yet to
see widespread use for time series of actual physical systems. Therefore, future
plans for this project involve primarily identifying systems for which this
technique may prove useful, and for which more practical experience can be
gained. Actual improvements to the method will involve investigations of
different types of general mapping functions, which could improve accuracy, and
also of different algorithms for searching data sets for nearest neighbors, which
currently consumes the majority of the computational resources associated with
the calculations.




B. Information Theoretic Methods for Determining Dimension

The second major proi 'hich was undertaken to develop new
methods for chaotic time series analysis was the attempt to develop a method for
determining the embedding dimension of a chaotic attractor. Determining the
correct embedding dimension is the first necessary prerequisite for performing
time-delay reconstruction of the attractor from a time series. The standard, most
successful method for determining the embedding dimension is the Grassberger-
Procaccia algorithm, but this algorithm has several well known difficulties,
including ambiguity in determining the minimum embedding dimension that can
be used, as well as sensitivity to noise, and often quite substantial data
requirements. The new method, which was developed in collaboration with
H.D.I.Abarbanel of INLS, is based on a result from information theory, and has
the advantages of unambiguously determining the minimum embedding
dimension allowable, as well as being much more robust to noise and requiring
less data. The background and results of this new method are presented in the
pre-print included in Appendix E, which is currently in review.

The central tool of the new method is a result from information theory
which was developed over some time by Aikaike, Wax, Kailath, and others. This
result is the definition of a function, called the Minimum Description Length
(MDL) function, which quantitatively weighs a functional which is essentially the
maximum likelihood fit to a data set, versus a measure of the complexity of the
model used to generate the fit. In simpler terms, it weighs the trade-off between
a data model being a better fit to the data, versus how complex (ie. how many
parameters) the model has. For a class of fitting functions whose dimensionality
is a variable, the MDL function can be proven to take a minimum at the minimal
number of dimensions necessary to describe the data. The principal result of the
paper in Appendix E is the adaptation of this function for time series of real data
and for different normalizations and parameter counting, and is now called the
Data Description Length (DDL) function. This paper demonstrates how the
DDL function can be used to determine unambiguously the minimum dimension
necessary to embed an attractor from a time series of data.

The actual algorithm which was developed works by first constracting a
data matrix from the time series, and then calculating its eigenvalues by singular
value decomposition. These eigenvalues are used in the determination of the
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maximum likelihood fit to the data. For the present method, a guassian
distribution of the reconstructed attractor is assumed, which of course is
inaccurate for most attractors. The central point here is that although our
assumption is crude, the question being asked is also rough, ie. how many
independent dimensions is the attractor distributed along. By assuming a
guassian distribution, the specific form of the DDL function can be written
down, and from this formula the numerical value of the DDL function can be
calculated for each value of the embedding dimension. The dimension for which
the DDL function takes a minimum is the dimension which best describes the
data, under the constraints of the particular distribution chosen. The algorithm
has been developed to the point where one simply supplies the time series as data,
adjusts a few parameters to the proper regimes, and then picks off the minimum
of the resulting plot of the DDL function to find the correct embedding
dimension.

Results of experimentation with the DDL algorithm (see Appendix E)
have shown the technique in most cases to unambiguously yield the correct
embedding dimension for test chaotic systems. In addition, and quite
importantly, the method works in the presence of significant amounts of noise
(up to 15-20 dB SNR ), and also requires far less data and computational
resources than the Grassberger-Procaccia algorithm. This makes the method
particularly well suited to analyzing experimental time series. There are still
some difficulties, however, with determining the dimension of attractors whose
topology is not simple (ie. multiple lobes or interleaving). This prohlem is
almost certainly related to the choice of a gaussian distribution for the
underlying maximum likelihood fit, as discussed above.

Although no immediate work is planned on this project, future efforts will
have to address the problem of formulating the DDL functional form based on
the inclusion of higher order terms in the underlying maximum likelihood fit.
This, unfortunately, has already proven to be a difficult task. Finally, further
application to known systems will be necessary to gain additional practical
exprience.




V. Summary

Research performed during this funding period has included: an improved
formulation for the energy density of an infinite lattice of vortex-like objects,
and an investigation of all possible geometries of the two-component, triangular
vortex lattice and its energy of slip displacement; an extensive numerical
investigation of the properties of an important new model of the interaction of a
vortex with a bluff body in an open flow, which exhibits a ‘chaotic trapping'
phenomenon; identification of low-dimensional chaos in a vortex interaction
experiment in open flows, utilizing a new method for determining minimum
embedding dimension; an extensive new method for using time series of data
from chaotic, dissipative systems to do system identification and prediction; and
finally development of a new method for computing the minimum embedding
dimension from a time series, used in the vortex experiment above, which is
unambiguous, requires less data, and is more robust to noise than conventional
techniques.

All of the above projects have resulted in significant new results regarding
either vortices or vortex dominated flows; the determination or description of
chaos in systems; or both aspects; and have culminated in three published papers,
two papers currently in review, and one pre-print currently in preparation.
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Energy of infinite vortex lattices
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An expression is derived for the energy density of a lattice of point vortices (or other logarithmic
objects) having an arbitrary number of vortices of arbitrary strengths in an arbitrary unit cell. The
result is expressed in the form of a rapidly convergent series well suited'for numerical evaluation.
The effects of separately changing the shape and dimensions of the unit cell are shown for simple
cases, and the energy of the triangular lattice is calculated as a function of slip displacement,

I. INTRODUCTION

We consider the problem of finding the energy of an
infinite number of classical point particles confined to a
planar lattice and interacting pair wise with a logarithmic
potential. These particles will be viewed as vortices in an
Eulerian fluid; they are also equivalent to rectilinear line
charges, line currents, or screw dislocations. Qur objec-
tive is to find the relative energy of different
configurations of J vortices having strengths
[Ty ..., Ty in a unit cell defined by the lengths L,
and L, of its sides and the angle ¢ between them.

If the sum of the vorticity strengths is not zero in the
unit cell the system is stationary only in"a coordinate
frame rotating with angular velocity (2,

— r r l.r
T2 Lsing’ &

j=1

We consider the lattice only in such a frame or,
equivalently, in a nonrotating frame with an imposed
background solid-body rotation of the opposite sign.
—Qr. Similarly, an opposite uniform background charge
or current would be needed for line charges or currents.
Such constant background fields play no role in the lat-
tice properties, and serve merely to cancel formal! singu-
larities that occur at zero wave number. Of course, these
background fields must be explicitly included to study the
global properties of finite? systems.

The task of deriving lattice sums for Coulomb interac-
tions has a long history.® Our purpese here i5 to obtain
the most efficient lattice sum for a general two-
dimensional lattice and our method based on results by
Glasser,* who considered the particular case of a rec-
tangular unit cell (¢=90°). In addition to obtaining a
rapidly convergent lattice summation, we obtain an ex-
pression for the energy density of a vortex lattice that is
invariant to physically equivalent designations of the unit
cell, which-are not necessarily primitive cells, By means
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of this expression it becomes easy to compare the energy
of all possible lattices containing the same mixture of vor-
tex species.

II. LATTICE ENERGY

The total energy due to mutual vortex interaction is
=4 '
ET——E;ZI F,'rjlnlr,'—rjl ’ (])

where d is the fluid density (mass per unit area) and the
double sum omits i =/, For an infinite lattice Ey is un-
bounded, even in the presence of a background, However
this unboundedress is easily avoided by considering the
energy per vortex E, which is finite:

E = lim (2)

47
—E
M—wdIM T’
where M is the number of unit cells. It is convenient to
subdivide the sum over all vortices into sums over the J
vortex species in al] unit cells,

3=3 E+°--+E (3)
AN PR ! i
and to note that

_E:jg’FaFﬁlnlria—er|=MI“aI‘BZ’ In|e—r3+L,| . @
Ja Jb n

The sum in the above equation is over all integers
ny,n,=0,t1,%2,..., except if a=pB, in which case
n,=n,=0 must be omitted. The vortex positions are r2,

a=1,...,Jin areference unit celf and
Ln=L|n|el+L2n2c2 (5)

is a generic lattice vector (e;-e,=cos¢). Using Egs. (3)
and (4) in Eq. (2) gives
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o , 21-—! J N 2m‘(m,y|+mzy2)
E==T?3'llL,|~53 3 CpZhld+L,l,  py=Lsind £ :
n a=l 3= n 2T umytwo) M +m3p?—2m myp cosg
(6) (13)
where where y,=(x,sing—x,cosp)/L,sing and y,=x,/
; L,sing. The same sequence of transformations of Ref. 4
F;—--} > (7)  then leads to
a=] o
and Vix)=(sing/pm) 3, cos(kz,/sing)/k*

III. LATTICE SUM

To evaluate the lattice sums in Eq. (6) express the
Fourier transform of the logarithm function using box
normalization,

'l f n
sl i 23 SRR o [ A |
p—08515, % k*+p St 52

(8

in the limit where s, and s, become infinite. A nonzero
“mass’ parameter u changes the logarithm function into
a short-ranged one, and is a fundamental parameter for
understanding the effect of the background. To perform
the lattice sum it is convenient to employ the so-called
reciprocal-lattice vectors g defined by

_ 2w imy my o s
_;m— _L-'—v|+_2-2—v2 y V,-'ej-—ﬁ,-jsm(ﬁ. (9)
Theh,
=X Inlx+L,|=V(x)+c, , (10)
n
where
27 g8
Vix)= - , (11)
LILZSln¢gi§0) g
¢, =lim——2T (12

p—0u’L Losing

The divergent constant ¢, corresponds to the g=0 com-
ponent (m; =m,=0); the effect of the background is to
cancel this divergent constant.

To apply Glasser’s method one first writes Eq. (11)in a
more explicit form,

J

L4

k=1
—in ﬁ h(s,zy,2,), (14)
sm—w
where
h(s,zy,z9)=1—2e _Izzﬂ’“ﬁ"wpcos z, +2§£cos¢ ]
+e—z|z2+2mindwp , (15)

with z, =27x;/L; and p=L,/L,.

In terms of these new variables a lattice translation
x—x+L, becomes z,—z, +2mn,+2mn,cos6/p and
2y—2z,+2mn,sing. It is easy to verify that Eq. (14) is in-
variant under lattice translations, consistent with Eq.
(10). The first summation of Eq. (14) can be performed,
giving the more efficient representation,’

(sing/m) 3, cos(kz,/sing)/k?
k=1

=|z,l(lz,| /sing —27) /4w + w(sing) /6,  (16)

valid for |z,| S27sing. The consequent loss of transla-
tional invariance in the e, direction causes no difficulty in
numerical evaluations.

The expression for V(x) given by Egs. (14)-(16) con-
verges quite rapidly. In practice, the evaluation of the
infinite product of terms h (s,z,,2z,) reduces to the multi-
plication of about four to eight terms because, for large
integers s, h(s,z),2z,) is dominated by unity plus terms
proportional to exp(~s), which have a very fast decay.
This product expansion is almost identical to the expan-
sion for the Jacobi © functions; for the special case of
$=90° studied by Glasser, it.-reduces to them. Finally, an
expression is needed for the first term of Eq. (6), which is
the energy of identical vortices on a primitive lattice, a
result derived also by Tkachenko.® This term is
equivalent to the following limit:

P lnIL,,|=linz {}‘_ In|x+L,,I~—ln!xI} . an

Performing this limit on Eq. (14) gives

=3'In|L,|= é—sinq&—-ln(Zﬁ/Ll )=In [J {1—2e = 2mkindl/ocog 2mrs(cosg) /p]+e ~4misindlp) (18)

s=1

Now we scale the energy to obtain equal energies for physicaily equivalent lattices. This is simply done by noting
that E in Eq. (6) is the energy per vortex. Hence, scaling the lengths L; and L, by a constant « gives the correc: nor-
malized energy and renders a constant vortex density. This causes no changes to the ratio L, /L,, but in Eq. (18) the di-
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mensional constant L, enters alone. We choose the density to be unity, i.e.,

J
=l
a*L,L,sing

Solving for a and multiplying L, in Eq. (18) by a then gives
12
sing | 7 ‘

In(27/aLl })=In Tp

T

(19)

(20)

which removes all dimensional constants from Eq. (6), except for the I';, whose dimensions are trivial to remove.

The final result for the energy density is

12
17, sind =
E=TY{—Zsing—In |27 | = —In{] 4(s,0,0)
{p 6" ( Jp A
+—2-érr L) ol + Lsing
J2 U p | 4n | sing - 6

i<j

where z,_,-,-=21r(r?~r?)-§ /Ly, zz_,i=21r(r?—r§’)'?/[.2,
and h(s,z),2,) is defined in Eq. (15). This expression for
E gives the re'ative energy density of lattices containing
fixed ratios of vortex species having fixed strengths. To
compare the energies of lattices which do not have the
same mixtures of vortices requires assumptions or physi-
cal information about the vortex self-energies.

What makes Eq. (21) useful for numerical evaluation is
the fast convergence of the function /1 (s,z,,z,). Some ap-
plications, not discussed here, require calculating the par-
tial derivatives of E, for which it is convenient to change
the unit-cell variables p and ¢ to o =2n(sind)/p and
x=2m(cosd)/p.

1.15
=
]
c
3
°
-1.25 1
O
(=]
]
c
®
-1.35 r - r
50 70 90 110 120

9 (deg)

FIG. 1. Effect of varying the angle ¢ between the unit-cell
generators for fixed unit-cell lengths. The different unit cells are
illustrated for $=90". (a) On= vortex per unit cell with L, =L,.
(b) Two vortices at positions (0,0) and (0.5,0.5) with respect to
the unit-cell lengths, L, =L,. (¢c) Two vortices at positions (0,0)
and (0,3/2) in a unit cell with L,=L,/V3=1. The energy
density is the energy per vortex in units of dT"2/4m, where d is
the fluid density and T is the unit of circulation.
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IV. EXAMPLES

The foregoing results will now be applied to some sim-
ple examples. First, consider the change of lattice energy
density induced by varying the angle ¢ between the lat-
tice generators while holding fixed the lengths of the unit
cell and the relative positions of the vortices. Three cases
will be considered: (a) one vortex per unit cell with
L,=L,; (b) two vortices per unit cell, also with L, =L,;
and finally (c) two vortices per unit cell with
L,=L,/V'3. The results as calculated from Eq. (21) are
shown in Fig. 1. The triangular lattice occurs for (a)
when =60 and 120° and for (c) when ¢$=90°. The

-0.8
> :1.0 ]
‘@
]
° d
o>
o
g 4
€ 1.2

-1.4

0.5 1.0 20 3.0
Lz/L|

FIG. 2. Effect of changing the aspect ratio L,/L for fixed
angle ¢. The various unit cells are illustrated for L,/L,=1,
with the vortices associated with the unit cell indicated by solid
circles. (a) One vortex with ¢=90". (b) Two vortices with
$=90". (c) Two vortices with $=60". (d) Two vortices with
$=45"
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square lattice occurs for both (a) and (b) at $=90". The
energy densities of the triangular and square lattices are
—1.3211174284 and —1.3105329259, respectively.
(Earlier evaluations of the energies of these simple lattices
are equivalent within constants.%?) Although curve (b)
has a minimum at ¢=90° this is a constrained minimum
and does not result in a stable lattice; indeed, it joins
curve (a) which leads to the absolute minimum.

Next, the angle ¢ is constrained and the ratio of unit-
cell lengths L,/L, is varied. These results are shown in
Fig. 2, where the various cases are (a) one vortex and (b)
two vortices per unit cell with $=90°, (c) two vortices
with ¢=60°, and (d} two vortices with ¢$=45°, Only
curve (b) achieves the_triangular lattice. This occurs at
L,/L,=V'3and 1/V3. Note that the horizontal scale is
logarithmic, to illustrate the symmetry around L, /L,
=1. It appears that curve (d} may also reach the low en-
ergy of the triangular lattice. In fact, it does not, nor is
the minimum it does reach an unconstrained minimum of
the lattice. Also despite appearances, curves (b, (c), and
(d) do not mutually intersect.

Finally, the slip strength of the triangular vortex lattice
is calculated for displacements along one of the principal
axis directions. That is, the energy density is evaiuated as
a function of a rigid displacement, through one lattice
spacing, of a number n of lattice rows with respect to the
same number of fixed rows. The pattern repeats, of
course, to infinity. During this displacement the unit-cell
dimensions and angle are held fixed so, in particular,
there is no change in volume. Figure 3 shows the results
for various n, as labeled. Obviously, the maximum
occurs for a displacement halfway between equilibrium
positions and is largest for alternating single rows
(n=1). This energy is just that of a rectangular lattice
with L,/L,=(V3/2)¥'=(0.866)%!, which can be
verified by comparing the maximum in Fig. 3 with curve
(a) in Fig. 2 at that ratio. The curves are approximately
related to each other by

nEj(d)—E,1=n [ Ex(d)—E,] , (22)

where E, is the triangular lattice energy density (given
above) and d is the displacement. Future publications
will treat other applications, especially those that involve
seeking minima of the energy density in the presence of
additional dynamics, mixtures of vortex strengths, and
the unconstrained space of lattice variables.’

V. CONCLUSION

Lattices of nonneutral vortices, like charges, have a
long-range interaction which leads to a formal singularity
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FIG. 3. Slip strength of triangular vortex lattice for the rigid
displacement of n rows of vortices with respect to n stationary
rows in each unit cell. The curves are labeled by n and the
range of displacement is one lattice spacing along a principal
axis.

when the lattice energy is calculated as the N — oo limit
of a finite system. By the same method as used for
charges, this singularity can be removed by adding a neu-
tralizing background. For vortices, this background is
taken to be uniform, with the result that there is no
phenomenon of screening. Also, like charges, the field
for each vortex leads to a formal singularity in the self-
energy in the limit of vanishing core size. This singulari-
ty, too, is irrelevant, except that it prevents, in the ab-
sence of further assumptions or physical information, a
comparison of the lattice energies of vortex systems con-
taining different mixtures of vortex strengths,

The energy density of the general vortex lattice (arbi-
trary unit cell and arbitrary number, magnitudes and
signs of strengths of vortices per unit cell) is given by Eq.
(21), which has the virtue of being easily evaluated nu-
merically, in the sense of rapid convergence of its infinite
products. This expression provides a new, practical tool
for studying a wide range of vortex lattice problems.
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Chaotic vortex-body interaction
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ABSTRACT

It is shown, by using the Poincaré-Melnikov-Amold method, that the motion of a linear
vortex in the flow past a cylindrical body is chaotic. In particular, a vortex can be captured
by the body and then, after some complicated rotation (2€ar the body, can be lost. More

general problems of vortex-body interaction are discussed qualitatively. Possible applications of
the theory are indicated.




The study of the chaotic interactions of lincar vortices has a twelve year history with the
participation of many authors (see Rel. 1-15 and references therein). Generalization to the
axisymmetric flows have been indicated in Ref. 16. The main conclusion from these studies is
that two-dimensional and axisymmetrical flows of ideal incompressible fluid are generally non-
integrable and with appropriate initial conditions exhibit chaos. This is in contrast with the
opinion which prevailed earlier among the advocates of the soliton approach to the hydrody-
namics. The chaotic motion of vortices has various applications, in particular, to the problem
of weather prediction..!'?

The main goal of this note is to indicate novel features of chaotic motion which arise in the
presence of a moving body. Firstly, it is enough to have only one vortex in order to get chaotic
motion. Secondly, the mechanism of generation of chaos is very transparent in the vortex-body
system. Thirdly, we get new phenomena — chaotic capture — loss of vortex by a moving body.

Vortex-body interactions are important in many situations. The most dramatic examples are
the aviacatastrophies, caused by a vortex initiated by downdraft of cold air,'® and the destruction
of buildings by tornado. We will start with an analytical description of the motion of a linear

vortex in the flow past a circular cylinder. Then we will make some qualitative remarks about
more general problems.

In the frame of reference moving with the cylinder, the velocity of a linear vortex in an ideal -

fluid is a Hamiltonian superposition of two parts of motion. The first part corresponds to the
potential motion of fluid relative to the cylinder (see, for example, Ref. 19), such as if the vortex
has zero intensity. The second part of the motion is induced by the interaction of vortex with
cylinder. In the case of circular cylinder, this motion is induced by an image vortex, placed
inside the cylinder at the distance from the center ¥ = a?/r, where a is the radius of cylinder

and r corresponds to the position of vortex. Both parts of motion have zero normal components
of velocity at the surface of the cylinder.

We will scale distances by a and time by a/uq, where uq is the characteristic fluid velocity
. at infinity. If the fluid velocity at infinity is constant, then the problem is characterized by only
one nondimensional parameler o = x/2wauy, where x is the vortex intensity. In the case of

vibration of cylinder, we have the relative fluid velocity at infinity
u(t) = up(1l + esinwt), (1)

where ¢ and w are the nondimensional amplitude and frequency of vibration.

In polar coordinates (p, ¢) with origin in the center of the cylinder, the Hamiltonian system
for the motion of the vortex has the form

dp 10H . 1 . :
- ;%——smd,(l—;) (1 + esinwt), (2)
dg  19H  cosp (. 1\, . . . « '

@i~ T pbp (“ pi)“*“’"“’""ﬁi? ®)
H = Hy+ely, p=£—>1

Hy = 'Co;qf(ﬂ’—l)“‘%]"(p’—l): ' - @
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cos ¢

I, = (p* — 1) sinwt. . (5)

With € = 0, the system (2)-(4) has a general analytical solution. The vortex trajectories (4)
are presented in Fig. 1. Without loss of generality, we assume that the motion of Quid around
the vortex is clockwise (¢ < 0) and the direction of fluid velocity at infinity is from the top to
the bottom on Fig. 1. We see that there is a homoclinic vortex trajectory [2(1), #o(t)] with
the hyperbolic stationary point at ¢ = 0,p = p.,(c = p;? — p.). The homoclinic trajectory
separates the region where the vortex is captured by the body.

The stationary trajectories of vortex in the flow past circular cylinder have been studied
in Ref. 20 without recognizing the Hamiltonian structure of the problem. The homoclinic
trajectory have not been indicated in Ref. 20, probably because at that time the homoclinic
trajectory was considered as something pathological and physically irrelevant to the problem.
Now we know how important the homoclinic trajectories are for the generation of chaotic motion.

For ¢ small but non-zero, the system (2), (3) has no analytic integrals of motion. It possesses
transversal intersecting stable and unstable manifolds — namely, the Poincaré maps P(to) which
advance a solution by one period T = 2 /w starting at time o, possess transversal homoclinic
points. We will show this by using the Poincaré-Melnikov-Arnold (PMA) method. This type of
behavior of dynamical systems is called chaolic.

According to PMA method,'**? we consider the Melnikov function

M(to) = | {Ho,Hi)(polt = to), do(t — ta)i ), (6)
where {,} denote the Poisson brackets

) . L[0A(p, 8,t) 0B(p,¢,t) 8A(p,4:1) 8B(p, $,1)
{“aB}(ﬂ:‘f’)t)—p[ 3/7 | 0(}5 3¢ 6/7 .

Integral (6) is token along the homoclinic trajectory [po(t — to), #(t — 1o)]. We will show that
M(to) has simple zeros.

From (4)-(6), by & change of variable, we get:

-

M(t) = —o /_ : ﬂn—ﬂ[;i&(—t:%o—)]sinwtdt

_ _U/w sin[do(1)

ooll) ] (sinwt cos wig -+ cos wi sin wiy) dt ‘ (7
- Po

Since @o(t) - 0, po(t) — p. exponentially near the hyperbolic stationary point (when ¢t — o0),
the integrzl (7) is convergent. It is convenient to choose the initial position: §o(0) = 7. In this
case we have go(—t) = —do(1), po(—1) = po(t) and (7) reduces Lo:

M(ly) = =7 coswiy /:: én—p[%n sinwt dt. (8)

.The integrai in (8) is not identically zero, because it is the Fourier transform of a function |
which is not identically zero. Function M (o) clearly has simple zeros. According to PMA theory,

2




this proves that system (2,3) has no analytic integrals of motion and vortex trajectory is chaotic.
In particular, the vortex which is initially far from the body, can intersect the homoclinic loop
and will be captured by the body. After several complicated revolutions around t/he body, the
vortex will eventually escape.?® In connection with the capture-loss phenomena, we have the
following theorem. Let S be the set of positions of the vortex at time o, for which the vortex for
all ¢ > ¢, will stay inside a circle C surrounding the body. It ¢an be proven that the subset of S,
for which the vortex was outside of C of some t < ¢, has zero measure. The proof is the same as
in the Littlewood’s theorem?® for conservative (gravitational) system. The only condition which
matters is the preservation of volume in phase space. The nonautonomous Hamiltonian system
clearly satisfies this condition. The theorem remains true if instead of circle C surrounding the
body, we choose any area in phase space. .

In the case of arbitrary shape of a cylindrical body we still have Hamiltonian superposition
of external and induced motion of the vortex in terms of corresponding Green’s functions for
the Laplace operator. The external velocity is finite everywhere. The induced velocity is infinite
near the body and zero at infinity. Having this in mind, we generally can expect existence
of a homoclinic separatrice with hyperbolic stationary point, where two parts of velocity are
balanced (in the case of stationary external velocity). Thus, the described above phenomena of
chaotic vortex-body interaction seems to be generic,

The local kinematic pressure, exerted on the surface of the body by the vortex, is of the order
of k?/d?*, where d is the distance between vortex and body. In the chaotic regime of motion, a
vortex can come closer, it will spend more time near the body and is more likely to create a
destructive impact on the body.

The generalization to the case when we have additional circulation xo around the cylinder is
stralghtforward In this case we have to add into (4) the term —agln p, where o¢ = xo/27wau,.
‘By using the above described procedure, it is easy to show that in the time-periodic external
flow, the motion of fluid particles becomes chaotic even without a vortex (o = 0) when |oo| > 2.

Condition |gg| > 2 insures the existence of a hyperbolic stagnation point when o = 0.
Generally, when o # 0 and oo # 0, the unperturbed system has several stagnation points
(hyperbohc and elliptic). With € 0, the vortex can chaotically change the direction 6f rotation

~ ~. " ... during the capture. This is clear physically, but it has to be investigated in
detall numerically.

In practical problems, the vortex has a finite core, which leads to a system with an infinite
number of degrees of freedom. If the size of the cofe is small in comparison with the size of the
body, the multipole representation of the vortex can be used. In the simplest representation we
have two closely located concentrated vortices, which rotate around each other. In this case we
get chaos even without oscillation of the cylinder (¢ = 0). The proof is lengthy and will not be
presented here, but the idea is simple — the reduction of the Hamiltcnian system.?®> The slow
variables are the coordinates of the center of vorticity, the angle of mutual rotation of vortices
plays the role of time and the distance beiween vortices is a small parameter. In the case of
bigger distances belween two vortices, one of the vortices can be captured forever and other
will escape. The capture of one of the vortices does not contradict Littlewood’s theorem. This

kind of partial capture of vorticity in a more complex situation happens when a tornado hits a
building. .

e Tt il et L

e At R




The problem of three-dimensional chaotic vortex-body interactions with the effects of vortex
stretching and reconnection is more difficult and profound. In this case we plan to use the method

of three-dimensional solenoidal vortex singulazities (vortons), which includes a mechanism of
inviscid dissipation of energy.!8%
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Figure Captions

1. The vortex trajectories in the flow past a cylinder (p. = 3).
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We coasider the problem of prediction and system identification for time serics having broadband power spectra which anse
from the intrinsic nonlinear dynamics of the system. We view the motion of the system in 2 reconstructed phase space which
captures the attractor (usually strange) on which the system evolves, and give a procedure for constructing parameterized maps
which evolve points in the phase space into the future, The predictor of fu‘ture ponts in the phase space is a combination of
operation on pact points by the map and its iterates. Thus the map is regarded as a dynamical system, not just a fit to the data.
The invariants of the dynamical system - the Lyapunov exponents and aspects of the invanant density on the attractor - are used
as constraints on the choice of mapping parameters. The parameter values are chosen through a least-squares optimization pro-
cedure The method is applied to **data” from the Hénon map and shown to be feasible, It is found that the parameter values '
which minimize the least-squares criterion do not, in general, reproduce the invanants of the dynamical system. The maps which
do reproduce the values of the invariants are not optimum in the Jeast-squares sense, yet still are excellent prediciors. We discuss
several technical and general problems associated with prediction and system identification on strange attractors. In particular,
we consider the matter of the evolution of points that are off the attractor (where hittle or no data 1s available), onto the attractor,

where long-term motion takes place.

A broadband power spectrum observed in the time
series of a system variable may have its origin in noise
extrinsic to the system. However, it has become clear
in recent years that its origin may be in the nonper-
iodic, deterministic chaos associated with & nonlin-
ear system evolving on a finite-dimensional strange
attractor [1]. In the latter case, which is the one we
address in this note, the geometrical structure of the
attractor and thus of the time series may be exposed
by thic meihud of phase space reconstruction {24 ).
This takes an observed scalar variable, x(n)=
x(ty+nAt), and produces a D-dimensional embed-
ding space from the time lagged signals x(n),
x(n+1), .., x(n+1p_,), where the 1, are appro-
priately chosen lags [5]. The sequence of D-vectors
for n=1,2,., N

' Institute for Nonlinear Science.

y(n)=[x(n), x(n+1), .., x(n+1p_,)] (1

describes the evolution of the system in the embed-
ding space. Theorems due to Takens and Maiié {3,4]
tell us that if D is about twice the Hausdorff dimen-
sion of the attractor, we are assured of a good rep-
resentation of that attractor by the y(n). In practice,
and in this note, & good representation is achieved
by taking 1,=j7, with ra common lag, and D the least
integer dimension greater than the Hausdorff di-
mension. Along with others, we use properties of a
correlation function [6] to decide which D is ap-
propriate for a given data set.

The evolution of vectors y in the embedding space
R? provides a dynamically sound setting for the
analysis of the broadband time series. The first step
in our analysis is system identification or parameter
estimation for a map F(y, @) fiom R? to itself, de-

0375-9601/89/$ 03.50 © Elsevier Science Publishers B.V. 401
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pending on parameters a=(a,, .., a»). This map
takes y(n) to y(n+1):

y(n+1)=F(y(n), s). (2)

Given a form for F(y, €), the parameters & arc to be
estimated. Both the form of F(y, &) and the criteria
for choosing a are the issues of this note. Using F(y,
&) for prediction of the future evolution of the un-
derlying system or for its control will be the subject
of subsequent papers [7].

Actual extrinsic noise complicates the analysis of
time series and, of course, is inevitably present in any
interesting time series. In this note we ignore the role
of such extrinsic noise. We wish to separate the treat-
ment of data with intrinsic broadband time series
from the study of such data contaminated by extrin-
sic noise. We will return to the analysis of extrinsi-
cally contaminated chaotic motion in our later work
171.

One of our central assumptions is that the points
y(n) lie on an attractor which is usually strange or
fractional dimensional. Motion on the attractor is
taken to be chaotic or sensitive to initial conditions.
Thus, predicting the value of points, y(n), on any
individual orbit evolving from a starting value y(1):

y(n)=F(y(n-1),a)=F(F(y(n—2),a),a)
=F2(y(n-2),a)=..=F"'(y(1),a) (3)

is a numerically uncertain matter as n grows large.
Indeed, for familiar low-dimensional systems such
as the Hénon map or the Lorenz attractor [8], n
larger than order 10 is usually unpredictable given
small machine or initial condition errors,
Prediction of the evolution of a point, y, on the
attractor in the reconstructed phase space may be de-
termined by looking at points in the temporal past
of y, as well as the evolution of points that are both
spatially nearby and on the attractor. Knowledge of
. where the neighbors of the point y have evolved is
as important as knowledge of where its temporal
predecessors have beéen. This notion is present in
several papers dealing with the same general subject
as this note [9]. Our formulation of the concept is
embodied in the explicit analytic formula we give for
the map F(y, a). This aids in both the analysis of the
map’s properties and its use in numerical work. With
the idea in mind of using information about the
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neighbors of a point to assist in predicting where it
will go, we choose mapping functions F(y, a) of the
form*

Fina)= % YU+ L0500 6) )

where the y(j) are the D-vectors constructed from
the original scalar time series x(n). The f,(y, y(j),
a) are functions parameterized by the a’s and vanish
rapidly when |y~y(j)|*/o> 1. (] | is the Euclid-
can distance in R?.) F(y(n), &) is then determined .
by all the neighbors of y(n) regardiess of the tem-
poral order in which the neighborhood is visited. For
appropriate choices of f; the value of F(p, @) is &
weighted average of the places in R? to which the
neighbors of y go in one iteration of the map.
Our specific choice of f,(y, y(j), a) is

L y(), a)=exp(—|y—y(j)1*/0)

x(a. +ay() - ly—-y(i)}

R
+Z‘; ak(ly—y(i)lz/o)’"‘) (5)

with m, some choice of integers. This is one among -
a large class of f's satisfying our requirements of -
evolving points according to the fate of their neigh- 4
bors. This equation determines how ‘“‘close” y is to {
each of the data vectors y(j). For large values of z
ly=y()|*/o the exponential dominates and the 4
function approaches zero. The polynomial softens 4
the exponential decay while simultaneously provid- 4
ing a polynomial fit to the data for those values of
ly—y(i}|3/a that are small. v
A problem arises when f,(y, y(j), @) in our map -

depends only on the Euclidean distance of y—~y ().
We find that if ¢ is small enough to accurately fore-
<asi puinis on the attractor then the Jacobian matrix’s
of F(y, a) which we will numerically evaluate on the’
data may be so small (due to the exponential tcrxn)
that we are unable to calculate Lyapunov cxponcnts.
The term associated with a, provides for a non-zero
Jacobian when y is evaluated at some y(j) which bas -
no neighbors in the data set. A zero Jacobian would

' Arguments for the general form here are given in ref. {10].
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be fatal, since we will eventually use F(y, &) to cal-
culate our Lyapunov exponents,
The predictor we choose for & point y(N+1) could
_in principle be just F(y(N), a). It could also be
F2(y(N-—1), &) or F/(y(N—j+1), a) for any j,. We
are seeking a map, F(y, &), to reproduce the data
y(1), .., y(N) as well as possible, However, it is also
critical that the value of ¥(j) be the result of iterates
of the map on y(j—1), y(j—2), ... etc; that is, we are
approximating the dynamical system which gives us
the y(j). With this in mind we have chosen as pre-
dictors a weighted average over L equivalent forms
of y(N+1). L will typically be a small number, and
the weights X, will be chosen to decrease as j in-
creases in some manner consistent with one’s con-
fidence in the reliability of F/(y, a). We choose then

L
.v(l\/'i'l)=1§,l XF(y(N—j+l,a). (6)

If F(y, a) were the exact mapping, then each term in
this sum would be X,y (N+1) itself, thus we require

L
3 X=1. (7

sl
This choice of predictor is a natural extension to
the nonlinear situation of the linear predictive scheme

YN+1)= 5 Ky(N=j+1) ®)

discussed in many places [11]. By including itera-
tions of the map F(y, a) it explicitly embodies the
idea that we are dealing with an iterated map or dy-
namical system. It also provides a “lever arm™ on
predictions since it looks back not just one step but
many to see where 2 given point y will evolve. Since
F/(y, a) provides information on the evolution of
the neighbors of the points which end up at y(N+1)
this *“lever arm” is both temporal and spatial. Inter-
estingly, using the optimization criteria we are about
to discuss, this method also yields much better quan-
titative fits to the data than using the single term
F(y(N), a).

In principle one would establish the parameters
X=(Xx, .. X.) and a=(aq,, .., ap) by minimizing
the cost function

PHYSICS LETTERS A

10 July 1989

C(X a)=(N-L-1)""! -

2

x”f (k+1)— fx,il(y(k-.jﬂ),a) )
Akml Jjml
(9)

This alone would be a fairly standard least-squares
way of determining the parameters X and 4, Other
than the requirement that F(y, @) search phase space
neighborhoods to determine where to map y, this
minimization is familiar. In this paper we report re-
sults obtained by minimizing C(X, a) by searching
various values of a, for fixed values of X. In our sub-
sequent paper we discuss searches over both X and
a.

The individual orbits of dynamical systems of the
form y—F(y, a) which exhibit chaotic motion are
sensitive to changes in initial conditions or roundoff
error in machine calculations {1]. There are, how-
ever, quantities that are invariant under the motion
and are characteristic of the dynamical system that
gives rise to the data, y(n). The least-squares esti-
mation of @ by minimizing C(X, a) does not guar-
antee that the resulting map F(y, a) will give the cor-
rect invariants, Even if C(X, @)=0 we cannot
guarantee that F(y, a) captures the full dynamics of
the system that generated the data, since all data are
subject to error, we are using a finite data set, and
only predicting a few steps into the future. In any
event, in practice, we are able to make C(X, a) small
but nonzero. The fact that C(X, &) is not zero im-
plies that there is certainly no guarantee that the in-
variants will be reproduced by the map F(y, 4). To
guarantee that the values of the invariants of the un-
derlying dynamical system are built into the para-
meterized maps F(y, a), we seek the parameters val-
ues that minimize C(X, &) subject to the constraints
that F(y, @) yield the correct values for the invariant
charactenstics. To implement this we need to iden-
tify the relevant invariants, determine them from the
data set in a manner independent of the least-squares
minimization, and give rules on finding them for any
map F(y, a).

We are aware of two kinds of invariants for dy-
namical systems [1]. Both are connected with er-
godic properties of the true underlying dynamics that
generated the data set. The first is the set of char-
acteristic Lyapunov exponents, 4,, 42, .., Ap. The
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second is the invariant density of points on the at-
tractor, p(y).

We assume that when C(X, &) is near zero the map
F(y, a) is ergodic on the attractor. If this is true, then
the A7*° are given by Oseledec’s multiplicative er-
godic theorem [12] as the logarithms of the eigen-
values of )

[DFM())IDF¥p( V™ (10)

as M- oo, where the dagger denotes Hermitean con-
jugate, DF(y) is the Jacobian matrix

DF(y)ap= "’—Fa—‘y’;—‘—’ (11)

and

DF¥(y) =DF(F¥~1(3,a))..DF(F(,4))DF(y) .
(12)

The A’s are invariant in the sense that all initial points
y(1) that are on the attractor yield the same values
for the A's.

If only AP*® is desired, then

& loB(Tr{DF¥(3) ]} (13)

gives a very accurate value for AT*? as M becomes
large. Basically this is because

Tr[DFM(y)] = }%exp(Ml,)zcxp(Ml,) (14)
aml

for large M. This rule for finding A7 from the map
F(y, @) turns out, in practice, to be easy to program
and completely adequate for use in constraining the
optimization of C(X, «).

Establishing the Lyapunov characteristic expo-
nents from data turns out to be a delicate procedure
for all but the largest positive exponent, A¢** [13].
This appears to be operationally the case whether the
data comes from an experiment or is computer gen-
crated. Hence, we have chosen to restrict our atten-
tion here to the largest positive Lyapunov exponent.
Let us suppose 4¢** has been determined from the
data, y(n). The equality A7*? =21{** forms one of the
constraints we will impose on the minimization of
the cost function.

It seems to us a matter of some interest to create
reliable, efficient methods for the determination of
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the full Lyapunov spectrum from data and fmm maps 4
F(y, a). v
We now turn our attention to the second type of 4
invariant, the invariant density, p(»). The invariant
density of a map, F(y, a), is defined as 1 3

M .
PW)ane= lim 2 3 $2-F(1,0).  (15).

For an ergodic map (which we have assumed our j
map to be) p(p) is invariant in the sense that all ini-
tial points y(1) that are on the attractor yield the §
same value for p(y). The spatial average of g(y), an¥
arbitrary function on phase space, is given by

(& =f dPyp(») g(») .

For ergodic maps (g) is invariant under the action ]
of F(y, @), i.c. ;

[ 4290 e )= (&>
= [ 42PN a8 (F (3, 0)) (16) §

The invariant density determined by the data is ',
clearly given as ;

N -
PWlawn= 3 I 8203 (K)) an §
Thus, (&) is given by g
N
Sam= L E(R]. (18)

The second constraint we will impose on C(X, #) 3
is the equality of p(¥)mep With p(¥)a.. We cannot ¥
constrain the minimization of C(X, &) by the full §
content of p(y), since it contains an infinite amount
of local information. However, we can choose some §
specific functions g,(y) which we deem important |
about the dynamical system and require (£, mp™%
{8 an 8S constraints. For this paper we report the ¥

resplts obtained by using o= lnl‘nvv\( - -!6};’21): o

There is no intrinsic mgmﬁcancc to this phase func<y
tion, but it does have contributions from large values §
of Euclidean distances on the attractor. Also it is not§
connected in any direct way with the function C(X.' :
a) and, thus, contains information about the attrac-¢§
tor quite different from C(X, a). g

An obvious question is what is the best choice of .'
moments, {g), to use to constrain the cost function.’
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To answer this we expand p(y) in terms of some set
of orthonormal functions y,(y) which are concen-
trated on the attractor, p(y) = Z,..,B,¥,(y). The re-

_quirement that the y,(»)’s be concentrated on the

attractor implies that the number of these functions
needed to represent p(y) accurately (within the res-
olution given by finite N') can be small. Thus the de-
tails of p(y) can be transmitted in terms of a set of
functions *“tuned” to the attractor and their coeffi-
cients, One learns the functions from one data set
and uses them as & basis set for future data sets. If
we knew the B,, we would be able to reconstruct the
phase space average of any g(y) since

(&= ,.Z: B,.(J' d”)’%(l’)&'()'))- (19)

The term in large parentheses is independent of the
dynamical system. It depends on the phase function
g(y) and the basis vectors only.

The B,’s are the moments (phase space averages)
of the eigenfunctions y,(y) and constitute the op-
timal moments to use in constraining the cost func-
tion. In the larger paper which follows this note [7]
we show how the B,=[ d®yp(y) w,.(y) may be used
to constrain the minimization of C(X, a). The key
is the choice of the w,(y) which we select as the op
timum Karhunen-Loéve eigenfunctions [14] of the
correlation matrix formed by independent samples
of paaa (). These eigenfunctions are automatically
concentrated on the attractor.

We have implemented the program outlined here
using “data” generated by the Hénon map of the
plane (x,, x;) to itself,

X (n+1)=1.0~ax;(n)*+x;(n),
Xy(n+1)=bx;(n), (20)

with the familiar parameter values a=1.4 and =0.3.
Starting with data oa x,{n), n=1, Z, ..., N+1 we
constructed the two vectors y(n)=(x,(n),
x(n+1)) forn=1, 2,..., Nas our basic data. In units
set by the map itself, we found the minimum dis-
tance between points on the attractor to be ~10-#
to 10~* when N> 500. We chose the parameter o in
our map F(y, a) to be about 100 times the square of
this minimum. For large A this means that most
points in the data set will have some neighbors, Spe-
cifically we took 0=3.4X10-7,
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For our predictor we took three terms:
y(+1)=XF(y(]), ) + X, F*(y(I-1), &)
+X,F(y(1-2),4) . (21)

Recall that we chose to fix the X; rather than vary
them in this note. To reflect our greater confidence
in the lower-order iterates of F(y, 1), we took X; =0.8
and X;=X;=0.1. Similar values of the X; give much
the same qualitative results. In the work we report
here we have chosen the number of parameters 4 t0
be 4. We constrained the minimization of C(X, @)
over the @ with 4, and with the mean of the phase
function (g) so when both constraints are imposed
we have two free variables among the a. The powers
m; and m, in the F(y, a) were chosen to be fixed
during the minimization of C(X, a). We took them
to be my=4 and m,=>5. A parameter search over the
m;. could have been done as well; but we have not
done this.

JThere is an important item which we were re-
quired to address in our work. It is quite general, so
we discuss it and our solution to it before reporting
on particular calculations. The data we are given lies
on the attractor; indeed, it defines the attractor, The
attractor is an object of zero volume in R? since its
dimension is less than D. We have, thus, no infor-
mation from the data on the behavior of the map
y—F(y, &) when y lies in most of R®, Our map must
contain some rule which takes points y that are off
the attractor and brings them onto the attracting set.
Our class of maps F(y, a) does that by mapping
points that are off the attractor, which clearly have
no neighbors among the data y(n), to the origin y=0.
We have addressed this matter by translating the or-
igin of the coordinate system in which the y(n) are
given to lic well within \/E of some data point.
{Which data point we chose seemed not to matter.)
When the parameters @ have reached values near the
optimum and that optimum is doing a good job of
tracking the data, this translation of the origin is
doing nothing. While we are searching the @, how-
ever, and are far from the optimum, this translation
reinjects points mapped off the attractor by a bad
F(y, a) back onto or very near the attractor. This de-
vice, or an equivalent one, provides both stability and
logic to the parameter search and is certainly needed
for any D> 2.

If there were a way to probe the system producing
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the data, we could avoid this need for reinjection by
pulsing the probe and letting the system itself ex-
plore phase space off the attractor. The information
we need would then be in the data set. The usual sit-
uation we anticipate is that the scalar time series x(2)
represents [ong-time behavior of the system and that
only motion on the attractor is represented in the
data. i . .

In our work with data from the Hénon map we be-
gan with N'="750. This was large enough to cover the
attractor reasonably densely and allowed us to make
calculations quickly. We also tried to choose N large
enough to give an accurate picture of the attractor
but small enough that we could imagine ourselves
operating on a small data set we had been given. Our
choice of N was partly motivated by our observa-
tions that the method we use to compute A; when
applied to the Hénon map directly undergoes some
fluctuations for N much smaller than 400 and has
settled down to a value 1,=0.408... after that. This
value is consistent with other determinations of this
Lyapunov exponent, so we_were confident we had
not chosen too small a value of N. With this value
of N, we searched the parameters g to minimize C(X,
a). Our search utjlized the software package NPSOL
{15], which docé not search for global minima, so
some variation of initial values of the @ was needed
on our part. After some looking around we found a
very shallow minimum in the variable a, near which
the other a, took the same values for large excursions
in a,. The values of the parameters at the minimum
were a,=1.18 a,=607, ay=~-0.0784, and
a,=0.0126. At these values, the cost function C(X,
a) took the value 0.03967, while the Lyapunov ex-
ponent 4, was 5.95, rather than 0.408, and the value
of the phase space average of g(y) was 6.18 rather
than the value of 2.81 computed from the data.
Clearly we achieved a very good “fit” to the data as
far as the cost function C(X, @) was concerned, but
ilic 1uap F(p, @) ai that set of parameters & had httle
to do with the dynamical system generating the data.

Next we imposed only the Lyapunov constraint
(AmP=29*2) opn the minimization of the cost func-
tion. The parameter values found in our search were
a,=1.19, a,=0.816, a,=0.000764, and
a,= —0.0121. At this point the value of C(X, a) was
0.04175, which is still an excellent “fit” in a least-
squares sense. The Lyapunov exponent now differed
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from its value taken from the data by 0.05! This ac-
tually was a general rule we saw in our fitting of F(y,
«); namely, the smallest C(X, &) did not give good
values for the constraints, and a larger, though often
not much larger, cost function was found by the con-
strained optimum. This means that while the con-
strained optimum will give a slightly worse point to
point prediction of future values of points in R?, it
will, by construction, give better global properties.
Finally we imposed the equality of both the largest

Lyapunov exponent (A™P=A4%") and the phasc space |

average ((8) mup=<{&Ddm). The precise minimum
resulting from the application of the search routine
NPSOL depends on the acceptable limits we put on
the satisfaction of the constraints. All minima were
in the neighborhood of C(X, a) =0.09. For example,
requiring each of the constraints to be met to an ac-
curacy of 0.005, led to a cost function of 0.09082.
Relaxing this to an accuracy of 0.01, led to a cost
function of 0.09063, which is essentially the same,
The parameter values shifted around in a common
neighborhood for all these limits imposed on the
constraints, indicating we were just moving around

the same constrained minimum zt various small dis- -

tances. For constraints required to be satisfied within

+0.006, the values of the a, were 4, =0.940, a,=1.21, ;

ay=—0.0260, and a,=0.00188.

What is important here is not the specific set of
values of the parameters a. Rather, it is that we are
able to find a,’s that meet both of our constraints and

that although the a;'s that give accurate values of the 4

constraints are quite different from those of the un-

constrained minimum, they still give an acceptably :

small cost function.
We repeated this kind of calculation with a variety

of values of N and on data sets generated with dif- |

ferent initial conditions for the underlying Hénon

map. For N=1200 and N=1700, for example, we ';

report 1n table 1 the resuits of calculations precisely
along the lines just discussed. They are rather similar
in character to the results for N=750 just reported

and to the results for other values of N we explored.”!

In the table we show the C(X, a) for both the con-
strained and unconstrained optimization. The val-
ues of the constraints 4, and {g) are shown for the
map both when those constraints have been imposed
and when they have not.
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Optimization results. C(X, &) (¢eq. (9) with F(y, a) from cq. (4)) is shown with and without invariant constrants, The following
parameters are used for all N: X, = 0.8, X,»=0.1, X;=0.1, 1™ =0.408.

N - C(X,a) a, a ay a AT (gy™®
750 2.81 unconst. 0.03502 1.18 607 ~0.0784 0.0126 5.95 6.18
L. 0.04175 119 0.816 0.000764 ~0.0121 0.403 6.16
4 8> 0.09105 0.940 1.21 -0.0260 0.00188 0.406 2.82
1200 2.81 unconst. 0.03090 ~ °1.19 14.30 ~0.0650 0.00912 .72 6.24
3 4, 0.03113 1.17 0.677 —~0.0645 0.00961 0.408 5.96
A, 48> 0.0851 0.966 -0.718 ~0.00757 —~0.00649 0.411 2.81
1700 2.90 unconst. 0.03444 1.16 -13.36 ~0.0809 0.00150 2.50 6.48
1, 0.03894 1.17 -0.246 -0.126 0.00301 0.405 6.32
1, 48> 0.0926 0.939 0.478 -0.0355 —-0.00237 0.409 2.91

We have now demonstrated that using a predictor
of the form

Y(N+1)= i XF(y(N-j+1, a)
J=l

with our class of mapping functions F(y, @) can give
excellent least-squares fits to chaotic time series data
on a strange attractor while simultaneously satisfy-
ing constraints on those fits dictated by the geomet-
rical invariants which characterize that attractor.
Furthermore, a straightforward least-squares fit to
the data does not, in general, reproduce the dynam-
ical information on Lyapunov exponents and invar-
iant densities that are contained in ui¢ data itself. To
produce the correct value of the invariants we must
accept a larger cost function. This loss in least-squares
based predicted power is made up for by the built in
quality of our predictors; namely, they will produce
the correct long-term statistical behavior of the dy-
namical system whose propertics we are trying to
learn by the analysis of the original scalar time series.

Several directions are clear for further investiga-
tion. One is to apply this set of methods to higher-
dimensional systems both for computer generated
data and for experimental data. Before the latter is
addressed we must study in detail the important is-
sue of how to treat extrinsic noise within the kind of
phase space description of time series we are using
here. Some ideas on that are contained in other work
[9,16], though no consideration of it has been given
here. Another quite interesting issue is the devel-
opment of a set of reliable and efficient algorithms

for the extraction of invariant quantities such as
Lyapunov exponents from data. Finally the exten-
sion of the methods demonstrated here to systems
with spatial degrees of freedom would be most in-
teresting. We plan to discuss many of these items in
our own expansion of this short note {7].

We are most appreciative for productive conver-
sations with K. Bruckner, M. Freedman, H. Levine,
J. Theiler, and Bruce West about the material cov-
ered in this note. This work was supported in part
under a contract with the DARPA Applied and
Computational Mathematics Program, No. F 49620-
87-C-0117 and in part under the DARPA-University
Research Initiative, URI Contract No. N00014-86-
K-0758. J.B. Kadtke wishes to acknowledge support
of AFOSR grant No. AFOSR-89-0072.
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Prediction in chaotic nonlinear systems: Methods for time series
- with broadband Fourier spectra
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We copsider the problem of prediction wr.d system identification for time series having broadband
power spectra that arise from the intrinsic nonlinear dynamics of the system. We view the motion
of the system in a reconstructed phase space that captures the attractor (usually strange) on which
the sysiem evolves and give a procedure for constructing parametrized maps that evolve points in
the phase space into the future. The predictor of future points in the phase space is a combination
of operation on past points by the map and its iterates. Thus the map is regarded as & dynamical
system and not just a.fit to the data. The invariants of the dynamical systen:, the Lyapunov ex-
ponents and optimum moments of the invarient density on the attractor, are used as constraints on
the choice of mapping parameters, The parameter values are chosen through & constrained least-
squares optimization procedure, constrained by the values of these invariants. We give a detailed
discussicn of methods to extract the Lyapunov exponents and optimum moments from data and
show how to equate them to the values for the parametric map in the constrained optimization. We
also discuss the motivation and methods we utilize for choosing the form of our parametric maps.
Their form has a strong similarity to the work in statistics on kernel density estimation, but the
goals and techniques differ in detail. Our methodology is applied to ““data” from the Hénon map
and the Lorenz system of differential equations and shown to be feasible. We find that the parame-
ter values that minimize the least-squares criterion do not, in general, reproduce the invariants of
» the dynamical system. The maps that do reproduce the valuss of the invariants are not optimum in
the least-squares sense, yet still are excellent predictord. We discuss several technical and general
problems associated with prediction and system identification on strange attractors. In particular,
we consider the matter of the evolution of points that are off the attractor (where few or no data are
available), onto the attractor where long-tzrm motion takes place. We find that we are able to reai-
ize maps that give a least-souares approximation to the data with rms variation over the attractor of
0.5% or less and still reproduce the dynamical invariants to 5% or better. The dynamical invari-
ants are the classifiers of the dynamical system producing the broadband time series in the first
place, so this quality of the maps is essential in representing the correct dynainics.
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1. INTRODUCTION nonperiodically on a strange attractor that lives in & %

phase space of finite (and often small) dimension. Noise -

A. General remarks

Analysis of time series from dynamical sysiems is an
important issue in many different fields of engineering
and scierce. The most common tool for this analysis is
the Fourier (or other similar) transform of the data x(n)
to discover sharp lines iz s power spectrum. Spectral
identification lies at the heart of much of the work on
linear systems to which time series analysis is applied.’?
When one encounters a broadband power spectrum, the
common assumption ig that it represents extrinsic noise
and not characteristics of the signal.

It has become increasingly clear in recent years that
nonlinear systems exhibiting deterministic chaos will gen-
erate a time series whose power spectrum is broadband.
Generically, dissipative nonlinear chaotic systems evolve

43

does not evolve on a strange atiractor and will occupy am '

arbitrarily large number of dimensions. Hence to modd
nonlinear chaotic systems as noise is certainly incorrect.
For these sysiems the source cf the broadband spectrum

is the intrinsic chaotic dynamics that underlies the time

series.

Qur focus in this work is on signals wuh a substantisl
broadband power spectrum which, since external noise is
absent or very small, represents the nonperiodic behavior
of a dynamical system whose orbits lie on 8 straage at-
tractor. The idea, now rather well established, that such
an object can have a small fractal dimension (and still
govern the long time evolution of a system with far more

numerous degrees of freedom than represented by the di- |

mens,on of the attractor) is really the starting point of
our work.>*
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4 ' PREDICTION IN CHAOTIC NONLINEAR SYSTEMS: ...

It is very important that though x(»#) may be a long,
quiet data set it is likely to have a very broad power spec-
trum. Indeed, if the signal one is studying has a power
spectrum with substantial strong lines, one is well advised
to recognize the implied sinusoids as the underlying
linear degrees of freedom and avoid altogether the labor
we propose here. i

It has been shown that in nonlinear systems that exhib-
it deterministic chaos one can determine from the obser-
vation of a single dynamical variable the geometric struc-
ture of the many variable dynamics that produced the
measured signal.>~'® The method that has developed for
the construction of the phase space in which the dynam-
ics dwells is called phase-spacc reconstruction. The result
of this reconstruction is an embedding space of d dimen-
sions (d is an integer) in which one may observe the at-
tractor. One can view the evolution in the reconstructed
phase space of the many dimensional dynamics in 2 quan-
titative fashion in the time domain.

In this article we describe both in outline and im-
plementation a program for extracting from the observa-
tions of this single broadband temporal signal quantita-
tive predictions for the evolution of initial conditions
differing from the observed data points. We assume that
once transients are gone the evolution of the system is on
a strange attractor with dimension d ;, where d , is gen-
erally fractional. If the evolution of the system is on such
an attractor, then the d-dimensional embedding space en-
closing the attractor should be sufficiently larger than d ,
that all the geometric information about the attractor is
exposed in the embedding space. Mafié and Takens's®’
formal result requires d > 2d ( +1 to assure one of a faith-
ful representation of the d ,-dimensional attractor as seen
in the d-dimensional embedding space, but often, in prac-
tice, d >d , will do. The method of phase-space recon-
struction seeks to construct from the x(n)s d-
dimensional vectors which, when embedded in R? de-
scribes the full dynamical evolution of the system. Sec-
tion II is devoted to the issue of identifying the correct
value of d from the data set.

For the moment suppose we have found d by one
means or another, We imagine measuring a single scalar
variable x at discrete time points x{n) for
n=12,...,Np. (Observation of several dynamical vari-
ables from the system is even better, and serves to pro-
vide confirmation of the information on the deductions

‘from observations of any single variable.) We can coun-

struct d-dimensional vectors y(n ) in the embedding space
by -

yinj={x(n)x(n+r)x(n+m),...,x(n+74_,)),

for some set of time lags 7,73, ...,74;. The set of
y(n)'s, of which we have N =N —d, capture the evolu-
tion of the nonlinsar system under observation as it
moves through the d-dimensional phase space. Familiar
phase-space coordinates are the time derivatives
x(n),dx(n)/dt,d*x(n)/dt?,..., evaluated at discrete
times. The data on x(n) are acquired only at discrete
times and establishing the values of these derivatives is
certain to be inaccurate. The time lagged x(n)'s, which
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are the coordinate elements of the y(n)'s, are nonlinear
combinations of the local time derivatives and are fully
acceptable substitutes for the usual phase-space coordi-
nates. This has been emphasized by Eckmann and
Ruelle.'®

With the y(n)’s and the embedding space in hand, we
ask here the ambitious question of how we can use the
scries of y(n)s to predict y(N+1),y(N+2), etc.
Equivalently, we can ask what is the evolution, under the
same dynamical system that produced the y(n)'s,~of a
point y, that is on the attractor but not in the original
data set. We will have answered this question when given
a data set y(1),y(2),...,y(N), we have identified a “reli-
able” map F from R? to itself parametrized by
a=(a,a,,...,ap) which takes us from y(n) to y(n +1),

y(n+1)=F(y(n)a).

If we can establish a reliable F(y,a), then the evolution

of a point y in R? that is not 8 member of the measur- -

ed data set would be y—y,=F(y,a), y,~y,=Fl(y,,a)
=F(F(y,a),8)=Fy,a), etc.

Our first view of the data y(1),y(2), ..., y(N)is that it
can be thought of as a pair of columns of vectors in R?

y(1)
y(2)

y(2)
y(3)

yin)  yln+1)
yiN—-1) y(N),

and our function F(y,a) comes from parametrically
“fitting”" the right-hand column of y(n-1) resulting
from the left-hand column of y(n ). Fitting the data then
suggests making a least-squares estimation of a so that
the cost function

. N-1 d
Cla)y=S | 3 yn(n+1)—F,(y(n),a)]
a=l |m=]

is minimized. Our approach differs from previous work
in det-iled tactics and in our imposition of important
geometrical structure as constraints on the minimization
of the cost function, The articles we have greaily relied
on for guidance and initial impetus in our research are
those by Farmer and Sidorovitch!! (we refer to this 1papcr
as FS in the following), Lapedes and Farber,'” and
Crutchfield and McNamara.'?

Our main point, simply stated, is that we are not just
making a fit to data with a set of functions IF(y,2). Rath-
er, these functions evaluated along the orbit are to be re-
lated to each other in the manner of a dynamical system.
This leads to a rather different view of the fitting func-
tions than the one usually taken in trying to match data
to observations. It means that the function F(y,a) evalu-
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It is very important that though x(») may be & long,
quiet data set it is likely to have a very broad power spec-
trum. Indeed, if the signal one is studying has a power
spectrum with substantial strong lines, one is well advised
to recognize the implied sinusoids as the underlying
linear degrees of freedom and avold altogether the labor
we propose here.

It has been shown that in nonlmur systems that exhib-
it deterministic chaos one can determine from the obser-
vation of a single dynamical variable the geometric struc-
ture of the many variable dynamics that produced the
measured signal.>~'® The method that has developed for
the construction of the phase space in which the dynam-
ics dwells is called phase-space reconstruction. The result
of this reconstruction is an embedding space of d dimen-
sions (d is an integer) in which one may observe the at-
tractor. One can view the evolution in the reconstructed
phase space of the many dimensional dynamics in & quan-
titative fashion in the time domain.

In this article we describe both in outline and im-
plementation a program for extracting from the observa-
tions of this single broadband temporal signal quantita-
tive predictions for the evolution of initial conditions
differing from the observed data points. We assume that
once transients are gone the evolution of the system is on
a strange attractor with dimension d ,, where d , is gen-
erally fractional. If the evolution of the system is on such
an attractor, then the d-dimensional embedding space en-
closing the attractor should be sufficiently larger than d ,
that all the geometric information about the attractor is
exposed in the embedding space. Matié and Takens's®’
formal result requires d > 2d , +1 to assure one of a faith-
ful representation of the d ,-dimensional attractor as seen
in the d-dimensional embedding space, but often, in prac-
tice, d >d , will do. The method of phase-space recon-
struction seeks to construct from the x(n)s d-
dimensional vectors which, when embedded in R? de-
scribes the full dynamical evolution of the system, Sec-
tion II is devoted to the issue of identifying the correct
value of d from the data set.

For the moment suppose we have found d by one
means or another. We imagine measuring a single scalar
variable x at discrete time points x(n) for
rn=12,...,Np,. (Observation of several dynamical vari-
ables from the system is even better, and serves to pro-
vide confirmation of the information on the deductions

‘from observations of any single variable.) We can con-

struct d-dimensional vectors y(n ) in the embedding space
by

vim=(x(n)x{n+r)xin+r) x{ntr

A3
P27y 0 0 g AT Id=—177

for some set of time lags 7),73,...,74—y. The set of
y(n)'s, of which we have N =Np—d, capture the evolu-
tion of the nonlinear system under observation as it
moves through the d-dimensional phase space. Familiar
phase-space coordinates are the time derivatives
x(n),dx(n)/dt,d*x(n)/dt?,..., evaluated at discrete
times. The data on x(n) are acquired only at discrete
times and establishing the values of these derivatives is
certain to be inaccurate. The time lagged x(n)'s, which
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are the coordinate elements of the y(#n)'s, are nonlinear
combinations of the local time derivatives and are fully
acceptable substitutes for the usual phase-space coordi-
nates. This has been emphasized by Eckmann and
Ruelle.!°

With the y(n)'s and the embedding space in hand, we
ask here the ambitious question of how we can use the
serics of y(n)s to predict y(N+1),y(N+2), etc.
Equivalently, we can ask what is the evolution, under the
same dynamical system that produced the y(n)'s,-of a
point y, that is on the attractor but not in the original
data set. We will have answered this question when given
a data set y(1),y(2),.. y(N ), we have identified a “reli-
able” map F from R to itself parametrized by
a=(a,,a,,...,ap) which takes us from y(n ) to y(n +1),

y(n-+1)=F(y(n),a).

If we can establish a reliable F(y,a), then the evolution
of a point y in R? that is not a member of the measur- *

ed data set would be y—y,=F(y,a), y,—y,=F(y,,a)
=F(F(y,a),a)=F¥y,a), etc.
Our first view of the data y(1),y(2),...,y(N) is that it

can be thought of as a pair of columns of vectors in RY

y(1) y(2)

y2)  ¥(3)

yin)  yln+1)
y(N—1) y(N),

and our function F(y,a) comes from parametrically
“fitting” the right-hand column of y(n-+1) resuiting
from the left-hand column of y(n). Fitting the data then
suggests making a least-squares estimation of a so that
the cost function

.e(a)= NE_l

d
S . (n+1)—F,(y(n)a)]

m=t

is minimized. Our approach differs from previous work
in detailed tactics and in our imposition of important
geometrical structure as constraints on the minimization
of the cost function. The articles we have greatly relied
on for guidance and initial impetus 1 our research are
those by Farmer and Sidorovitch®! (we refer to this Papcr
as FS in the following), Lapedcs and Farber,!
Crutchfield and McNamara.'

Our main point, simply stated, is that we are not just
making a fit to data with a set of functions F(y,a). Rath-
er, these functions evaluated along the orbit are to be re-
lated to each other in the manner of a dynamical system.
This leads to a rather different view of the fitting func-
tions than the one usually taken in trying to match data
to observations. It means that the function F(y,a) evalu-
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ated on the data vector y(n) is required to do more than
reproduce y(n-+1) as accurately as possible. F(y,a)
must also be a function which when iterated will repro-
duce y(n +2) after two applications to y(n) and y(n +3)
after three, etc. The notion of F(y,a) as & dynamical sys-
tem also leads to modifications of the cost function. The
cost function should reflect the fact that iterations of
F(y, &) also yicld points on the orbit. Furthermore, under
our approach geometrical properties of the dynamical
system given by F(y,a) are used to determine the success
of the fit. It is not just the function’s ability to reproduce
in a least-squares sense the observed data that is impor-
tant, The data contain invariant information that is
essentizl for a full description of the geometrical struc-
ture of the attractor that it evolves on. Our key observa-
tion in this article is that, in general, least-squares fitting
alone does not produce a map that captures the invariant
characteristics of the attractor described by the data
y(n), n=1,...,N. One must calculate from the data as
many of these invariant quantities as possible and then
impose them as constraints on the fit. In this way we em-
phasize the fact that one is creating & dynamics and not
just a fit to data. The product of our minimization of the
constrained cost function is a mapping F(y,a) of R to it-
self which is not only reliable in that it reproduces the
given data set by having a small cost function, but is also
representational in that it has the same geometric invari-
ants as the underlying dynamical system. The methods
for identifying those invariants and utilizing them as
classifiers for the dynamical system is a matter of some
importance in itself.

The invariants are properties of the function F(y,a)
viewed as a dynamical system which maps RY to itself.
We will concentrate on two kinds of invariants. One kind
of invariant, the Lyapunov characteristic exponents
Andy, ..., Ay, describes the expansion or contraction of
phase-space volumes under the iteration of F(y,a).!0="7
Lyapunov exponents are invariant under smooth changes
of coordinate and are independent of the initial condi-
tions of the orbit one follows on the attractor. The
second kind of invariant is the density of points on the at-
tractor p(y). It captures global features of the frequency
with which orbits visit various portions of the attractor.
The density is a different kind of invariant than the
Lyapunov exponents. Its integrals with smooth functions
G(y) are unchanged under operation with the mapping

* function which underlies the dynamics y(n )—y(n +1),

[ d% p(y)G(y)= [ d% p(y)G(Fly,a)) .

It too is independent of the initial conditions on the or-
bits.!0.18,19

In this paper we find the parameters a in F(y,a) by
minimizing a cost function subject to certain constraints.
The constraints are chosen to insure that iterations of the
mapping function F(y,a) give rise to values of dynamical
invariants which are the same as those indicated by the
experimentally measured data set y(n). In this way
essential geometric information about the particular at-
tractor on which the data live will be built into the para-

metric mapping. Straightforward least-squares min
zation does not accurately reproduce these invarians
Thus one must perform a least-square minimization swh
ject to the constraints that F(y,a) accurately produce thw
Lyapunov spectra Ay,A,,...,A; and the invariant densi®}
ty p(y). This paper is devoted to explaining in detail hows
one implements the idea just stated. .

vectors y(n), n .»N. We need to choose a class of ; ;
parametrized mappmgs, a cost function to minimize, and. 23
a means to impose the constraints on our minimization; ¥
The maps must have some way of fitting the data by 4%
closely reproducing one data point from the previous one 4
by y(n+1)=F(y(n),a). Our maps are required to “look %4
around” at the behavior of the phase-space neighbors of™”
the point y(n) and predict forward according to how a
cluster of phase-space neighbors, regardless of their tem-
poral sequence, are moved forward in time. The idea . «
here is that one may use knowledge of the behavior of lo-
cal regions of phase space as well as past points on an or-
bit to determine where a point will be mapped in the tem-
poral future. The maps we choose must then be sensitive
to their neighborhood in phase space and must inquire
about the fate of any spatial neighbor under the map
without concern of its temporal arrival in the neighbor-
hood. The map will then try to take any new point y and
map it forward to some weighted average of its neigh-
boss’ forward evolution.
We take our mappings to be of the form

N-1 ¥
F(y,a)= 3 y(n+1)g(y,y(n)a), (1 ;

ne=| b

where g(y,y(n );a) is near 1 for y=y(n), and vanishes -
rapidly for nonzero |y —y(n )|; the vertical bars represent “
some norm, in our case Euclidean, in R%. F(y(k),a) Wlﬂ
then be quite close to y(k +1).

This type of mapping is strongly suggestive of the form ™
used in the statistical literature under the name of kernel :¢
estimation or kernel density estimation. An explicit res
cent example that illustrates the similarity is found in
Ref. 20. Other useful discussions of this method applied £¥:
to various problems are to be found in Refs. 21 and 22} -
our attention was directed to this similarity by Farmer
and Sidorowich.”> We do not claim to have a better
method for choosing our function g than those in the }
literature, but our motivation here does differ from all the !
citations except Rice.”® Our constraints on g are also -
different, but could be modified. For example, the in- -
tegral of g over y need not be unity, nor do we require %
that g be positive. We will return to a discussion of
choices for g in our summary in Sec. VI.

Our choice here for g(y, y(n );a)—one among many, of
course—is this:
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. expl=ly—y(m)*/o]

»
a,tayy(n)(y—yin))+ kza aplly=y(n)|2/o)™ ]

2)

g(y,y(n);a)=_ —
N W e, 3 expl—=ly—y(m)f*/o)
. ll'-lh’
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The parameter space a is - P dimensional,
a=(a;,a,,...,ap). o is a fixed parameter that provides
a scale we can use to determine which peints in the data
set are “‘close” to y. The m,’s are also fixed at various
values. We could treat both o and the m;’s as parame-
ters to be optimized in the same sense as the a’s. Howev-
er, we choose not to do this in our work; not for any fun-
damental reasons, but because we wished to explore other
issues and wished to keep down the size of the parameter
space over which our minimization searches were per-
formed. .

The weight function g(y,y(rr);a) which we use was ar-
rived at after some experimentation. It, as do many other
choices, certainly satisfies our general requirements.
These requirements include the following:

The function is sensitive to the presence of near
“neighbors” in phase space. Only points y(n) within a
distance from y of order Vo make any sizable contribu-
tion to g(y,y(n );a).

When o0—0, g(y,y(n);a) becomes essentially a
Kronecker delta and the point y(n) is mapped precisely
to y(n 1),

It is easy to differentiate both in y and in a. These
derivatives are important in the minimization of the cost
function using our methods, and having explicit expres-
sions for the required derivatives in either of these in-
dependent variables makes the optimization routines run
much faster.

In the function we have chosen it is easy to retain
many parameters all of the same general form, thus as the
number of constraints on the optimization of the cost
function is increased, the pattern of our searches remains
the same.

The essential function which senses neighbors, namely
the exponential, can easily be replaced by other choice,,
such as those in Table 3.1 of Silverman’s monograph.?!
The general form of our arguments goes through then
without modification.

By virtue of the term involving a, in the numerator,
this form of g(y,y(n);a) allowed us to satisfy constraints
set by the Lyapunov exponents with numerical stability
and accuracy. The denominator serves as an approxi-
miaie counier for ihic number of neighbors of ine point vy,
80 the numerator works less to produce the required aver-
age for the forward prediction of the point y. The pres-
ence of the denominator assured us of numerical ease¢ in
making the parameters in the map F(y,a) meet our re-
quirement of producing an average over neighborhood
points in projecting forward in time any phase-space
point. This made the numerical algorithms we use much
more efficient and accurate.

The choice of cost function is also rather much up to
us. Since we are to think of F(y,a) as a dynamical system

P "
a;+ 3 aplly—y(n)|2/0}™
. k=3

evolving points y(n ) into new points y(n +1), we should
consider asaing the map to reproduce accurately from
y(n) not only the “next” point y(n + 1) but, via iteration,
a sequence of points y(n+1),y(n+2),y(n+3),

. »¥(n+L) up to some L beyond which we simply do

not trust the accuracy of our algorithm F or of the

machines we use to compute the future y's.
This suggests the predictor for future points to be a
linear combination of iterated powers of the map F(y,2),

L
yim+1)= 3 X, FXy(m—k+1),a), 3)
k=1

.,
where F¥ is the kth iterate of F as described above. If
F(y,a) were the exact mapping, then each term in the
sum over k would be X, y(m +1). Thus we require

L
E Xk=l .
k=1

The X's weight the various iterates of F and are used to
determine which iterates of F we believe are the most ac-
curate. Typically, one would require X;2X;,, to indi-
cate that the lower iterates of F are believed to be more
accurate than the higher iterates. This predictor is a nat-
ural generalization to the nonlinear problem of the com-
mon linear predictor

L
ym+1)=S X,yim—k+1),
k

with the clear differences associated with the iterative na-
ture of the map F(y,a).

This predictor [Eq. (3)] combines both past temporal
information from times m —k +1; k=1,2,...,L and in-
formation from all the phase-space neighbors of the orbit
points y(m —k 1) because of the structure of F(y,a).
The combination of spatial and temporal information
provides a significant “lever arm" which permits Eq. (3)
to quite accurately make forecasts about the forward evo-
lution of points y in RY. By utilizing the phase-space in-
formation in F(y,a) at each temporal step we efficiently
tap properties of the full data set.

The cost function associated with this predictor is

N=1 L
3 |lytn+1)— 3 X, Fiy(n—k+1),2)]2
k=1

C(X,a)=""%

N
3 lyn)-y(n)f?

n=i

@

This kind of cost function will automatically contain in-
formation on the Lyapunov exponents which themselves
are expressions of the dynamics as iterations of the map.
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.- tion?

Some information on the invarisnt density function on
“the attractor is also contained in this improved cost func-

Another major consideration to us is the great
difference in the coordinate scale of various attractors.

The numerator of the cost function: {Eq. (4)] is the residu-

al of the mapped function summed: over the entire trajec-
tory, and hence gives a measure of the sum of the abso-
Iute errors over all the mapped points. Since the absolute
error is obviously dependent on the macroacale of the at-
tractor, it i3 more informative to rescale the final cost
function value in some manner which reflects error. In
our samples, the scale of the attractor of the Hénon at-
tractor is on the order of unity, while that of the Lorenz
attractor is of order 100. Hence some form of rescaling
of the cost function became desirable in order to have a
relative measure of comparison between two systems with
different macroscale. We chose a normalization in the
following straightforward manner: we simple summed
the magnitudes of the position vectors of all the points on
the attractor, and retained this value as a constant. Ab-
solute values for the cost function after normalization by
the denominator in Eq. (4) give a more sensible relative
measure of the error of our prediction function F(y,a).

We note that FS suggest forecasting the evolution of a
point y by looking around at the neighbors of y among
the data set y(n) and observing where these neighbors go
under one iteration of the underlying map taking the
y(n) to y(n+1). They determine the future of the new
point ¥ by an interpolation involving the future of its
neighbors. Our mapping function Egs. (1) and (2) does
precisely this as indicated. All points in the data set are
given some weight in the future of y, but if g(y,y(n);a)
falls rapidly for large |ly—y(n)|, as we shall always
choose, only members of the data set y(n) neary, i.e., the
neighbors, play much of a role in its futurs, Our F(y,a)
in that sense is an analytic formulation of the FS idea.
More or less weight can be given to the near neighbors by
different choices for the function gly,y(n);a). The
Gaussian we work with could be replaced by a Lorentzi-
an or other choices which weight neighbors more.

C. Invariants

With e map and a cost function, Egs. (1), (2), and (4),
we are ready for the constraints. Section III is devoted to
a discussion of Lyapunov exponents. In it we first turn to
the extraction of the Lyapunov exponents Ay,A,,...,A4
from the data y(1),y(2),...,y(N). We do not add any-
thing but our own experience 10 that of many workers
Wwito have expiored the calculation of A, from data. We
attempt to convey to the reader an overview of the avail-
able methods for determining Lyapunov spectra and a
sense of their reliability. Therefore that portion of Sec.
1II may be skipped by persons with experience. We in-
clude it here since determining the A,'s is an essential step
in our plan for determining F(y,) and we have chosen to
comment on how we have done it rather than refer the
reader to the literature. Of course, we do that too. That
established, we discuss how to determine these numbers
in terms of the F(y,a). Equating the numerical values for

*¥/ ABARBANEL, BROWN, AND KADTKE '

A, from the data to their expression in terms of paramesy
ters a in F(y,a) wili constitute our first set of constraints
on the minimization of C(X,a).

Section IV contains our discussion of the invariant dn-
tribution of points on the attractor. In principle, this JE
quantity, which we called p(y), contains an infinite-4
amount of information on the dynamics. A finite data set: 4
y(n) restricts the resolution we have of this information,
We have chosen to express this finite amount of informa- 4
tion in terms of the projection of p(y) on a sct of dual g
basis functions which are a complete set in R%. Keeping 38
a finite number of these functions is equivalent to a finite 3
resolution view of the complex structure of p(y). 19 ke

One of our contributions in this work is a scheme for 3
choosing the dual basis functions “tuned” to the struc- .
tare of p{y). This allows us to represent our finite resolu- 3.
tion of p(y) by a small number of terms in an expansion R )
in the optimal basis functions.>~*" By projecting the 4
ply) determined from the data onto these basis functions, *§
we can determine the coeflicients of the expansion of p(y)
in this basis. Similarly, we can project the p(y) deter-
mined from the map F(y,a) onto these basis functions
and determine the expansion coefficients of the map.
Equating the coefficients one determines from the data to
the ones determined from the map constitutes our final
constraints on the minimization of C(X,s). Further-
more, we show how the components of ply), in this basis,
are the elements of the eigenvalue unity eigenvector of a
finite-dimensional matrix constructed from F(y,a) and
the dual basis functions.

In Sec.'V we describe our 1m§>lcmcntation of the con-
strained minimization program for two model systems:
the Hénon map of the plane to itself and (2) the Lorenz
system. In each case we numerically generate a data set
of x(n)’s. We then discuss in some detail our experience
in establishing the dimension of the space in which the
dynamics is embedded. We also discuss the calculation
of Lyapunov exponents, and aspects of the invariant dis-
tribution on the attractor from the y(n)s. Finally, we
carry out the constrained minimization of the cost func-
tion and indicate how well our parametrized mappings
are able to perform in predicting orbits other than those
in the given data set.

In this paper we are attempting to describe a method
of analyzing experimental data. For such a situation we
do not know a priori the correct embedding dimension,
the correct Lyapunov exponents, or the underlying ¥
dynamical system that can be used to generate the
correct invariant distrihution. Yet we have used data sets
gencrated by a dynamical system that we know. We have
used known systems for two reasons. The first is that it
provides a simple way to obtain large, noise free, data
sets. Second, it provides a way of measuring how well ex-
isting techniques are able to determine the embedding di-
mension and the Lyapunov exponents. In order to simu-
late experimental systems we treat the data set as having
come to us from an unknown source. Thus we do not use
any of the known properties of ecither the Hénon or the
Lorenz system.
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An issue of some importance we do not address in this |

paper is that of extrinsic noise which could contaminate
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our signal x(n ), This is not a dismissal of this important
issue but an attempt to separate out the matters of
efficiency and utility of our plan for prediction on strange
attractors from issues concerning the practicai degrada-
tion of our procedures by external noise. An equally im-
portant issue is the quantity of data available. The deter-
mination of Lyapunov exponents.is very difficult for short
data sets. As we have stated above the resolution of p(y)
is determined by the number of data points available. As
the dimension of the phase space increases, the amount of
data necessary for accurate prediction increases dramati-
cally.- We will return to the implications of noisy and/or
short data sets for our prediction procedure in later
work. For now we assume that we arc given essentially
noise-free, arbitrarily long time series x(n).

It is our expectation that our experiences with the two
systems listed above will give us the ability, in many in-
stances, to construct models in the form of our
parametrized mapping F(y,a) which allow prediction
and control of the underlying nonlinear ‘dynamical sys-
tem producing an observed signal x(n). The details of
the F(y,a) for a specific application should reflect the
known features of the physical or other phenomena giv-
ing the signal. It seems too bold, if at all possible, to sug-
gest any general rules for choosing forms for F(y,a).
This is sure to be a rich area for experimentation and our
own choice will be motivated by considerations we shall
defend in a later section and slightly alluded to above.

The matter of noise will be addressed in a future paper.
Our methods for dealing with noise follow those outlined
by Fuller?® and seem similar to the ideas of Sidorwich.®

I1. CHOICE OF AN EMBEDDING SPACE

In this section we illustrate how one can determine the
phase-space embedding dimension d from the scalar time
series x(n), n=1,...,Np. We assume that the data set
is long enough that we need not be concerned with sta-
tistical issues about the numerical accuracy of the quanti-
ties we consider below. We also assume extrinsic noise is
absent from the x(n)’s when we receive them. Matters of
short and/or noisy data sets, while critical in all applica-
tions, are addressed only peripherally in this paper.

Following the work of Packard et al.® and Mafié and
Takens®” and the developmental work of numerous oth-
ers we seek a set of lagged variables x(n)x(n+71)),
x(n+1,),...,x(n+74_,) which act as the coordinates
in a d-dimensional space in which the dynamics produc-
ing the x(n)'s is fully captured or embedded.

The choice of lags 7, is not a well agreed upon
The issuc is the accuracy and efficiency wiih
which the d-dimensional vectors that result from a par-
ticular choice of 7,’s represents the phase space in which
the attractor resides. If the underlying system were a
differential equation and a scalar variable x(¢) were mea-
sured at discrete times x(n)=x(ty-+nAt), then we are by
the choice of lagged variables trying to find a discrete re-
placement for the wusual phase-space coordinates
x(t)dx/dt,...,d? 'x/dt9"!. Mané and Taken's re-
sults indicate that, in principle, any choice of lags 7, will
do. We adopt the practice of choosing a single lag 7 and

motter 3
manet.

making all other lags muitiples of 7. The question of
what is the best way to choose 7 is still open. In & heuris-
tic sense, if T is too small, then the coordinate at x(n +17)
and x(n-+27) represent almost the same information.
Similarly, if 7 is too large, then x(n+7) and x(n+27)
represent distinct uncorrelate _escriptions of the embed-
ding space.

For reasons of consistency and ease in calculating
Lyapunov exponents (cf. Sec. III) we adopt the following
practice. We take the original scalar measurements and
calculate its autocorrelation function

1 p7,
Tfox(:+1)x(t)dr .

We then choose 7 to be approximately & to g the time
associated with the first local minimum of the autocorre-
lation function. We find that this system, although some-
what arbitrary, works well in practice and provides a sim-
ple and systematic way of determining 7. We set 7 to uni-
ty and thereby establish a time scale for the problem.

" The data x(n), n=1,...,Np thus become measure-

ments of the scalar variable separated by a constant time
step 7.
We then form d vectors

yx(n+d—1)) &)

forn=1,2,..., N=Np—d in a space RY capturing the
geometric structure of the attractor on which the orbits
x(n) lie. To establish d we need some characteristic of
the attractor that becomes unchanging as d becomes
large enough, thus indicating that the attractor can be
embedded in R% The usual Hausdorff or other dimen-
sions of the attractor are such characteristic quantities.
Numerical calculations of thé Hausdorff dimension
d 4(N,d) of an attractor may depend on the finite length
of the data set N and/or the embedding dimension d. For
N large enough d, will become independent of d when
the attractor is properly embedded in R%. Operationally
one increases d until d , remains constant and identifies
the minimum d where d , *saturates” as the embedding
dimension.

In fact, we, along with numerous others, do not recom-
mend the computation of d ,, however geometrically ap-
pealing it may be, because it is too demanding of comput-
er time. We suggest, and we use, the properties of the
correlation function D{r), proposed by Takens*? and by
Grassberacr and Procaccia,”® which is much easier to
compute.”* In terms of the data vectors y(n) this is
defined to be

y{n)=(x(n),x(n+1),...

2 N N
D(r,N,d)= S S etr—ly(H-yi,

NIN=D) & &
i#j ()

where ©(x) is the Heaviside function ©(x >0)=1 and
O(x <0)}=0. The vertical bars represent some measure
of distance in R“—we use the Euclidean norm, but that is
only a convenient choice. This correlation function
counts the points of the attractor within a distance r of
each other. Thus it possesses much of the same geometri-
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cal content as the Hnnadorﬂ‘ or other invarilnt dimension
attributes.
For N -large enough the behavior. of D{r,N,d) for

. small » becomes independent of N. As one would expect

from scaling arguments about fractals, as well as observa-
tionally, D(r,N,d ) is seen to take the form .

DR =rdr*d [ ..

for small 7and large N.3¥  «

We will identify as the cmbeddmg dxmenslon that value
of d where the structure in D(r,N,d) bscomes indepen-
dent of d. In this regime it is sufficient that D(r,N,d),
becomes independent of d over a range of r near r—0,
and large N {r=0 in a finite data set always gives strictly
zero for D(r,N,d) and is an uninteresting limit].

To illustrate the use of the correlation function as an
embedding dimension discriminant we have calculated
D(r,N,d) for very long time series taken from the two
examples we will be working w1th in this paper: (i) the
Hénon map of the plane to itself,*

x(n+1)=1.0—ax,(n)+x,(n), -
xy(n+1)=bxy(n),

with conventional parameter values a=1.4 and =0.3,
and (ii) the Lorenz system of three autonomous
differential equations®’

dx,(t)

dt =U(X2(1)"x‘(t)) ’
dx,(t)

” = —xy(0)xy(t)+rx (t)—x,(2) (8)
dX3(t)

0 =x(¢)x,(t)—bx,4(1),

with parameter values o =16, =4, and r =45.92.

For the Hénon map we took an initial condition lying
in its basin of attraction and iterated the map 4550 times.
The first 50 iterates were discarded as representing tran-
sient behavior, while the last 4500 points of x,(n) and
x,(n) were then used to make d vectors

yiin)=(x;{n),x,(n+1),...,x,(n+d—1))

fori=lor2 Ford=1,2,. 5D(rNd)wascomput-
ed using an efficient code developed by Theiler.>*
For y,(n) data these D(r,N,d) are plotted in Fig. 1. A
similar plot was generated for y,(n), but is not
shown. Because of the simplicity of the connection
xo(n+1)=bx,(n) in the Hénon map, thesc iwo views of
D(r,N,d) are really redundant. However, in the spirit of
treating each data series as having originally come to us
from a source whose underlying dynamics is unknown we
performed both calculations.

While a cautious and careful observer might say the
embedding dimension for the y,(n) data would be d =3,
we feel safe in concluding from these figures that d =2,
Computations with N greater than 4500 support this con-
clusion.

Further, if we take the x,(n) data and plot the two-
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x,(r 1)) for 4500 points.

vectors y,(n)=(x;(n),x,{n+1)),
figure seen in Fig. 2. This is, as should not be surprising

in this simple example, a rotated form of the Hénon at- ™

tractor. The usual display of the Hénon attractor is ob-
tained by plotting (x,(n),x,(n)) for our data. Since
x,(n)is (1/b)x,(n+1), the coincidence of these plots is
certainly not remarkable. Our goal in presenting this
kind of detail is as a guide to what one might expect in
more complicated examples rather than as revelations
about the Hénon map.

Next we turn to the Lorenz equations. Once again we
chose initial conditions in the basin of attraction and
solved "Eqs. (8) with a straightforward fourth-order
Runge-Kutta ordinary differential equation (ODE) solver
with a fixed time step. After discarding the first 50 time
steps as transients, we recorded x,, x,, and x, for
N =4500 corresponding to many natural cycles of the or-
bit around the attractor. From each of the three data
sets we formed the d vectors as in Eq. (5) and with them
evaluated the correlation function D(r,N,d) for
d=12,...,5. The D(r,N,d)’s for y,(n) data are shown

A\
Y
\!
\L
\
X
\
~-2.00 -1.50 ~1.00 -0.50 000 0.50 1.00 1.50

x(n)

FIG. 2. Hénon attractor x,(n) plotted against x(n -+ 1).

D(R) vs r for the Hénon map. y,(n)=(x(n), :

we reconstruct. the <}

<R i, ~

—— s by e
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in Fig. 3. An embedding dimension of d=3 is fairly

_clearly a safe choice for these data. A bolder choice

would have been d=2. Since it is known that the Haus-
dorff dimension of the Lorenz attractor is just above 2 in
this regime of parameter space, this would have been a
convincing, Althougb incorrect, choice. The message
here is that choosing d too large entails extra subsequent
computation, but no loss of information on the aitractor.
It is probably safer to live with a d one dimension too
large as a general matter of care. - We thus choose d =3.
The results of the y, and y, data are not shown. As with
the Hénon example the results of y, and y; are similar to
those of y,. The fact that the y,, y,, and y, vectors for
the Lorenz data (y, and y, for Hénon) yields similar re-
sults i3 to be expected since all three measurements
evolve on the same attractor. )

Next we plot the points y(n)=(x,(n)x(n+1),
xy(n+2)) iu the three-dimensional embedding space.
These are shown i Fig. 4 as a projection on a plane
with norma! vector [=(cosd)R,(n)+(sin6)X,(n+1)
+0%,(n+2) for =1.31. We note the similarity be-
tween Fig. 4 and the well-known shape of the Lorenz at-
tractor. Thus the method of phase-space embedding reli-
ably reproduces the Lorenz attractor. For the two exam-
ples we have used the reconstructed attractor is similar in
appearance to the attractor generated by the “true’” un-
derlying equations of motion. In general, the recon-
structed attractor will not have this visual similarity.
However, the reconstructed attractor will contain all of
the important invariant information as the true attractor.
The difference in visual shapes is the result of & nonlinear
change of variables between the true dynamical variables
and the reconstructed variables.

We close this section with a summary note reminding
the reader that our use of the correlation integral Eq. (6)
has been to establish an embedding dimension d in which
to view the system attractor described by our time series
x(n). We chose D(r,N,d) because it is familiar, easy to
compute, and has a clear geometrical meaning. For us it

FIG. 3. D(r) vs r for the Lorenz equations, y(n) for 4500
points and embedding dimensions d =1,...5. For this case
r=45.92,b=4.0,and 0 =16.

1789

20.00

0.(1020.00—1500-1000 -500 0.00 5.00 10.00 15.00
cos( ¢ )*x(n) + sin( ¢ )*x(n+1)

FIG. 4. Lorenz attractor created from x,;(n) data. The pa-
rameter values are r =45.92, b =4.0, and o = 16, while the pro-
jection angle is 6=1.31.

is a diagnostic tool. While the details of the small r be-
havior D(r,d)~r"®(r) contains important information
about the dynamics, we do not focus on that here.
Indeed, we are quite happy to accept other diagnostic
tools in its place.
HI1. LYAPUNOV CHARACTERISTIC
EXPONENTS—FROM DATA AND FROM THE MAP

In this section we discuss how one determines the
Lyapunov exponents that govern a dynamical system.
First we discuss how to extract them from an experimen-
tal data set and then from our mapping F(y,a). By
choosing the parameters a in such a way that F(y,a)
yields the same Lyapunov exponents as the experimental
data set, we are forcing a constraint on F(y,a) that is not
explicitly required by minimizing the cost function given
by Eq. (4). This local constraint should improve our abil-
ity to predict the short-term (and possibly long-term) evo-
lution of points that are not in the data set, but near the
attractor. Certainly points outside the basin of attraction
of the attractor we have observed in the original data set
will not evolve according to our F(y,a).

Rather than writing our own computer program, and
thereby become embroiled in the controversy of what is
the best way to determine Lyapunov spectra from an ex-
perimental time series, we have chosen to use metheds
that have already been proposed by two different research
groups. By comparing the results of both methods we
hope to improve our confidence in the spectra given by
each of them separately. The first method we shall report
on was developed by Eckmann et al.’® The second
method was developed by Wolf et al.’’ Finally, we will
show how we calculated the Lyapunov spectra from our
mapping F(y,a).

The choice of an appropriate data set for use in either
the Eckmann ef al. or the Wolf et al. method is some-




thing that cannot be overstressed. As stated in Sec. II the

time lag T between successive measurements of the
. «~dynamical variable must be appropriately chosen, if one
wants optimal results.

A. Eckmann-Kamphorst-Ruelle-Clliberto method

For *“¢ Eckmann er al. method the PORTRAN source
code we used when performing our numerical experi-
ments on the dynamical systems denoted in Sec. II was
provided by the authors of Ref. 38. It assumes that the
input is a string of positive integer data whose sampling

_rate i3 7. [The temporary conversion of the data set
x(n), n=1,...,Np to positive integers for the sake of
the Lyapunov calculation should not be a difficult
matter.] The code reads the data set and embeds it in a
d-dimensional space in the manner specified in Sec. II.
The result is a set of N=Np .data vectors
y(n)=(x(n),x(n+1),...,x(n-+d—1)) where we have
normalized 7 to unity [cf. Eq. (5)). It then chooses an ini-
tial y(n ) and finds all neighbors of y(n ) within a radius r.
These points, as well as their forward images, are used to
construct a linear mapping T from time n to time n+1.
The Lyapunov exponents are related to the eigenvalues of
the successive iterates of the map T. For a detailed dis-
cussion of the algorithm we direct the reader to Ref. 38.

The Eckmann et al. method assumes that the embed-
ding dimension d is related to the number of Lyapunov
exponents via the rule d =(d,, —1)M + 1, where d,, is the
number of Lyapunov exponents and M is a positive in-
teger. By allowing d,, and M to range over various
values a wide range of embedding dimensions is used.
We remark that the reader will recall that in Sec. II we
established a method for determining the minimum
embedding dimension d. The data vectors y(n) are as-
sumed to live on some attractor that occupies some por-
tion of RY It is a numerically difficult exercise to calcu-
late Lyapunov exponents from data. Thus it is necessary
to examine a wide range of possible embedding dimen-
sions d. It is our experience that the calculated values of
the exponents converge onto their correct values as d is
increased above the number specified by methods in Sec.
II. We report numerical experiments for d,, in the range
between 2 and 9 for M =1,2. (We remark that M =1 re-
covers d =d, , while M =2 is slightly below the Takens
and Mané limit.%7) In all of our tests we iterated the
tangent map T 2000 times before evaluating the
Lyapunov exponent.

To get a feel for the proper densities of points on the
reconstructed attractor, it is useful to use diagnostics
such ag, gav, a histogram of the number of neighbory fal-
ling within a range around the smallest nearest-neighbor
distance on the attractor. If the density of points on an
attractor is quite inhomogeneous, much higher mean
point densities are often necessary to insure-that most
points have at least a few nearby neighbors. Often a use-
ful diagnostic is simply to plot out the reconstructed at-
tractor, and visually obtain an intuitive feel for how
homogeneous the point density is. As a general rule of
thumb (inspired by Wolf et al.), we find empirically that
the minimum number of points required for the predic-
tion algorithm to go as something like 207, where d is the
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dimension of the embedding space, although this is prob
ably an overestimate when d is 4 or more.

The first dynamical system for which we present re-§
sults is the Hénon map of the plane given by Egs. (7). We?
_used a data set with N=10000 entries. The resuits are 'y
shown in Fig. 5 and Table 1. As one can see, the numeri- 4
cal experiments accurately predict the accepted value of SR
the positive Lyapunov exponent A;=0.418. Although {%
for ©° : M =1 case the computer code produced a reason- 4
curate prediction of the negative Lyapunov ex-
ponent, the code, in principle, will not yield accurate ¥

abl

values of the negative or zero Lyapunov exponents. This

fact is born out in the M =2 case (which is not shown), %
Furthermore, we know of no method that will produce -

negative Lyapunov exponents from an experimental data
set. Since we are unable to reliably determine the nega-
tive Lyapunov exponents from the data, we will not con-
strain F(y,a) to reproduce the negative values of the
spectra.

It should not be surprising that we are unable to deter-
mine the negative Lyapunov spectra using our data sets,
We have assumed that the data describe motion on an at-
tractor. The negative Lyapunov exponents indicate how
points in the phase space that are off the attractor get
onto the attractor. The portion of the data set that might
reveal how points off the attractor get to the attractor is
the initial transient. This transient is typically very short
(sometimes as few as 10 time steps 7) and is usually dis-
carded or otherwise unavailable.

A related issue to be addressed is that the code pro-
duces d,, exponents regardless of the actual number of
Lyapunov exponents that govern the dynamics of the
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FIG. 5. The results of calculating Lyapunov exponents by
the Eckmann et al. method for Hénon data, The horizontal
axis is d,,, the assumed dimension of the dynamical system that
produced the data set. Thus the method will produce d,,
Lyapunov exponents. The vertical axis contains the numerical
values calculated for the d,, different A’s. The two horizontal
lines are the known correct values for A, =0.418 and A=—1.62.
The method relates d,, to the embedding dimension d via
d =(d,,—1)M +1. This figure shows resuits for M =1. Spuri-
ous exponents are labeled with squares while dynamical ex-
ponents are labeled with Xs.
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TABLE I. Lyapunov exponents for the Hénon attractor M =1, and the number of data points is 10000,

d. A

2 A,=0.412 A=~-170

3 A,=0.412 M=—0.662" A=—172

4 A,=0.408 H A=-0.281 Ay=—0.655 T A=—1.88

5 A,=0.408 / A= —0.0824 A,=0.305 A=—0.622 Ag=—1.55

6 A,=0.407 - A,=0.128 Ay=—0.144 Aa=—0.321 Ay=—0.581
As=—1.56 o

7 T A=0.437 4,=0.323 Ay=—0.0767 =-—0.190 Ag=~0.335
A,=—0.604 ' ALy=—1.54 -

8 A,=0.602 4,=0.382 A;=-—0.0509 A,=—0.118 Ay=—0.203

=-0.332 Ay =—0.642 =—1.54

9 A,=0.677 A,=0.377 Ay=0.0896 =—0.0390 As=—0.124

As=—0.203 M=-0.324 Ay=—0.652 Ay=—1.58
Accepted values of A A=0.418 Ay=-1.62

physical system in question. However, it is relatively
easy to determine which of the d,, exponents govern the
dynamics of the system and which are spurious. We as-
sume that one has successfully determined the minimum
embedding dimension of the attractor by the method we
presented in Sec. II (or any other reliable method at the
reader’s disposal). Examination of Fig, 5 indicates that
most of the spurious exponents are negative. These nega-
tive exponents are necessary to contract the d-
dimensional phase space onto the attractor whose dimen-
sion is € 4 <d. The one positive spurious exponent ap-
pears at d,, =7 for the M =1 case. We know from Fig. 1
that the dynamics of the Hénon attractor can be embed-
ded in two dimensions. Hence we conclude that an ex-
ponent that exist only for d,, =7 must be spurious. The
origin of this s?u:ious positive exponent is Jiscussed by
Eckmann et al.’® It is believed it will stabilize at a vaias
of 24,.

We have averaged the calculated values of A, for the
M =1 case over the range d,,=2-6. We discarded the
values of A, for d,, 2 7 since they have obviously been al-
tered by the spurious Lyapunov exponent gencrated at
d,=7. We find that the average value is X,=0.409,
which differs from the accepted value of 0.418 by only
2%. For the M =2 case we found similar results. After
averaging we find that X, =0.420. In conclusion, we state
that by comparing the M =1 and 2 cases we fee] that the
code successfully determined the positive Lyapunov ex-
ponent associated with the Hénon attractor.

We now turn our attention to the second dynamical
system we wish to analyze, the Lorenz system of ODE’s
given by Eqgs. (8). The data set used for our numerical ex-
periments consisted of N=20000 entries and was gen-
erated by integrating Eqgs. (8) forward in time using a sim-
ple fourth-order Runge-Kutta routine with a fixed time
step. We chose to record the x(t) variable, although ei-
ther the x,(1) or x,(z) variable would do as well. Figure
6 is a graph of the autocorrelation function. The first
minimum is at n ~12 where n is the number of Runge-
Kutta time steps of length 0.03. The time associated with
this first minimum is approximately 7. ~0.36. We use a

sampling rate r=0.03, which is approximately % of the
autocorrelation time. Thus we use every Runge-Kutta
data point as our experimental data set. We allowed d,,
to range between 2 and 9 for M =1 and 2. The results of
our numerical experimeants are shown in Fig. 7 and Table
1L '

For all cases M =1 and 2, we are able to accurately
determine both the positive and the zero Lyapunov ex-
ponent. The accepted value of A, is 1.50. The average of
the calculated values of A, for d,, 25 in the M =1 case is
X,=1.45, which is an error of only 3%. As with the
Hénon example, we found better results for the M =2
case.

The question of a zero Lyapunov exponent requires
special consideration. Any dynamical system that is
represented by an ODE will contain a zero Lyapunov ex-
ponent. As can be seen from Fig. 7 and Table II, one of
the Lyapunov exponents calculated from the experimen-
tal aata set is very small (as much as two orders of magni-
tude) comnpared to A;. We also notice that this exponent
is very stabic and very persistent. It exists for M =1 and
2 over the entn~ range of d,,. Given this behavior and
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FIG. 6. Autocorrelation function for x,(¢), the Lorenz sys-
tem from 20000 data points.
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FIG. 7. The results of applying the Eckmann et al. method
of calculating Lyapunov exponents to 8 Lorenz data set. The
results shown are for M =1. For this dynamical system there
are three dynamical exponents at A,=1.50, A,=0.0, and
AJ= —22.5.

the prevalence of ODE's as dynamical systems, we feel
confident in predicting a zero Lyapunov exponent.

Of course, we have the luxury here of knowing that our
data set came from an ODE. This type of knowledge
concerning the origin of a data set is typically unavail-
able. Thus we must use our best judgment and live with
the fact that we cannot know for certain whether a
Lyapunov exponent generated by the Eckmann et al.
method should be interpreted as zero or just very small.
Our recommendation is that one compare the suspected
zero exponent to the smallest nonspurious positive
Lyapunov exponent generated by the code. If the
suspected exponent is as persistent, as stable, and more
than a factor of 25 smaller than the smallest positive ex-
ponent, we recommend that the suspected exponent be
assigned the value zero.
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B. Wolf-Swift-Swinney-Vastano method .

A second technique that we have investigated to deters:
mine Lyapunov exponents from time series is due to
Wolf, Swift, Swinney, and Vastano (WSSV).*® This paper
presents two algorithms, one for determining the full
Lyapunov spectrum from a known set of dynamical equas
tions, and one for determining only the largest positive:
exponent if one has available only a time series from
dynamical system. Since the paper includes the source
codes for the two algorithms, we copied and used them
directly. The WSSV code for time series analysis can
only determine the largest positive exponent. We have :
up to now chosen to use only one Lyapunov exponent as
a constraint to the nonlinear fitting method, and so this
program proves sufficient for our needs. Given the -
current difficulty of accurately determining other ex-
ponents from 2 time series of data, we restrict the con-
straints to one Lyapunov exponent. In addition to these
considcrations, the WSSV code is exceptionally easy to
use, and requires relatively minimal amounts of data.

The WSSV code for time series works in a manner
somewhat similar to other techniques which attempt to
approximate in some way the local tangent space about a
fiducial orbit. In this case, the code initially constructs
the time-delsy reconstructed coordinates for the system
in the usual manner, taking the parameters for the recon-
struction as input to the program. The calculation of the
Lyapunov exponent then begins by finding the nearest
neighbor in the reconstructed phase space to the first
point of.the orbit, where “nearest” is measured using the
usual Euclidean metric. Once this point is found, the
magnitude of the difference vector between the two
points is recorded. The algorithm then proceeds by
evolving the fiducial point along its trajectory, and the
neighboring point along its trajectory, a given number of
steps of the time series. The magnitude of the final sepa-
ration between the two points is then determined, and the
contribution to the Lyapunov exponent is then simply - :
given as the logarithm of the final separation divided by
the initial separation, divided by the time interval of evo-

£ Gise e RARRED, i

TABLE IL. Lyapunov exponents for the Lorenz attractor M =1, and the number of data points is

20000,
. d, A
2 A,=9.54 A=-6.30
3 A,=2.42 A=—127 Ay=—26.5
4 A=1.68 A,=-—0.308 Ay=—11.7 A,=-259
5 A=1.47 A;=0.0619 Ay =—6.84 AN=-12.7 As=—26.5 "
6 A=1.40 A,=0.0471 Ay=—4.50 Ay=—8.12 As=—13.0 ;
Ay=—26.1
7 A=1.50 A,=0.0141 Ay=-3.49 Ay=—5.81 As=—8.69
As=-—13.1 Ay=—24.8
8 A,=1.40 Ay=~—0.105 Ay=—1.96 =—4.02 As=—5.62
Ay=—8,24 Ay=—13.1 Ay=-—25.5
9 A=1.48 Ay=-0.109 Ay=—1.06 =-2.88 Ay=—3.68
=—5,63 Ay=-7.70 Ay=—12.6 Ay=-25.3
Accepted values of A A=150 A,=0.00 Ay=-22.5
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FIG. 7. The results of applying the Eckmann et al. method
of calculating Lyapunov exponents to a Lorenz data set. The
results shown are for M =1, For this dynamical system there
are three dynamical exponents at A,=1.50, A,=0.0, and
A;': —22.5.

the prevalence of ODE's as dynamical systems, we fecl
confident in predicting a zero Lyapunov exponent.

Of course, we have the luxury here of knowing that our
data set came from an ODE. This type of knowledge
concerning the origin of a data set is typically unavail-
able. Thus we must use our best judgment and live with
the fact that we cannot know for certain whether a
Lyapunov exponent generated by the Eckmann et al.
method should be interpreted as zero or just very small.
Our recommendation is that one compare the suspected
zero exponent to the smallest nonspurious positive
Lyapunov exponent generated by the code. If the
suspected exponent is as persistent, as stable, and more
than a factor of 25 smaller than the smallest positive ex-
ponent, we recommend that the suspected-exponent be
assigned the value zero.
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B. Wolf-Swift-Swianey-Vastano method .

A second technique that we have investigated to deters 3l
mine Lyapunov exponents from time series is due to
Wolf, Swift, Swinney, and Vastano (WSSV).*® This paper4

presents two algorithms, one for determining the full i:

Lyapunov spectrum from a known set of dynamical equa:§

tions, and one for determining only the largest positive-
exponent if one has available only a time series from the

codes for the two algorithms, we copied and used them
directly. The WSSV code for time series analysis can

only determine the largest positive exponent. We have :

up to now chosen to use only one Lyapunov exponent as
8 constraint to the nonlinear fitting method, and so this
program proves sufficient for our needs. Given the
current difficuity of accurately determining other ex-
ponents from a time series of data, we restrict the con-
straints to one Lyapunov exponent. In addition to these
considerations, the WSSV code is exceptionally easy to
use, and requires relatively minimal amounts of data.

The WSSV code for time series works in a manner
somewhat similar to other techniques which attempt to
approximate in some way the local tangent space about a
fiducial orbit. In this case, the code initially constructs
the time-delay reconstructed coordinates for the system
in the usual manner, taking the parameters for the recon-
struction as input to the program. The calculation of the
Lyapunov exponent then begins by finding the nearest
neighbor in the reconstructed phase space to the first
point of.the orbit, where “nearest” is measured using the
usual Euclidean metric. Once this point is found, the
magnitude of the difference vector between the two
points is recorded. The algorithm then proceeds by
evolving the fiducial point along its trajectory, and the
neighboring point along its trajectory, a given number of
steps of the time series. The magnitude of the final sepa-
ration between the two points is then determined, and the
contribution to the Lyapunov exponent is then simply
given as the logarithm of the final separation divided by
the initial separation, divided by the time interval of evo-

TABLE II. Lyapunov exponents for the Lorenz attractor M =1, and the number of data points is

20000.
. dn A

2 A,=9.54 A =—6.30

3 A=2.42 A =-1.27 Ay=-—26.5

4 A=1.68 Ay =~—0.308 A=—117 A,=-250

5 A =1.47 A,=0.0619 Ay=—6.84 A==—12.7 Ag=—26.5

6 AM=1.40 A,=0.0471 Ay=—4.50 A=—8.12 As=-—13.0
Ay=—26.1

7 A=1.50 A,=0.0141 Ay=—3.49 =-5.381 As=—8.69
As=—13.1 A;=-24.8

8 A=1.40 A;=-0.105 Ay=—1.96 AM=—4.02 Ag=—5.62
Ae=—8,24 A;=-13.1 Ag=—25.5

9 l,=l.48 l;=-0.109 ).j‘_‘_l-% =-2.88 ).5':_3.68
Ag=—5.63 A=-7.70 Ay=—12.6 o=—25.3
Accepted values of A A=1.50 A,=0.00 A=-—225
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FIG. 7. The results of applying the Eckmann et al. method
of calculating Lyapunov exponents to &8 Lorenz data set. The
sesuits shown are for M =1, For this dynamical system there
are three dveeay’ ' exponents at A,=1.50, A,=0.0, and

3

Z€cr « dynamical systems, we feel
*on.. o o 4 Zt.. Lyapunov exponent.
Of coatov, + . nave the luxury here of knowing that our

data set came from an ODE. This type of knowledge
concerning the origin of a data set is typically unavail-
able. Thus we must use our best judgment and live with
the fact that we cannot know for certain whether a
Lyapunov exponent generated by the Eckmann et al.
method should be interpreted as zero or just very small.
Our recommendation is that one compare the suspected
zero exponent to the smallest nonspurious positive
Lyapunov exponent generated by the code. If the
suspected exponent is as persistent, as stable, and more
than a factor of 25 smaller than the smallest positive ex-
ponent, we recommend that the suspected exponent b
assigned the value zero.

#1 “ABARBANEL, BROWN, AND KADTKE

B. Wolf-Swift-Swinney-Vastanc method .

A recond technique that we have investigated to deter- §8
mine Lyapunov exponents from time series is due toy
Wolf, Swift, Swinney, and Vastano (WSSV).* This paperd
presents two algorithms, one for determining the fult§
Lyapunov spectrum from a known set of dynamical equa<§
tions, and one for determining only the Iargest positive
exponent if one has available only a time series from

dynamical system. Since the paper includes the source 3

codes for the two algorithms, we copied and used them -
directly. The WSSV code for time series analysis can
only determine the largest positive exponent. We have -4
up to now chosen to use only one Lyapunov exponent as
a constraint to the nonlinear fitting method, and so this
program proves sufficient for our needs. Given the v
current difficulty of accurately determining other ex-
ponents from a time series of data, we restrict the con-
straints to one Lyapunov exponent. In addition to tiese
considerations, the WSSV code is exceptionally easy to
use, and requires relatively minimal amounts of data.

The WSSV code for time series works in a manner
somewhat similar to other techniques which attempt to
approximate in some way the local tangent space about a
fiducial orbit. In this :ase, the code initially constructs
the time-delay reconstructed coordinates for the system
in the usual manner, taking the parameters for the recon-
struction as input to the program. The calculation of the
Lyapunov exponent then begins by finding the nearest
neighbor in the reconstructed phase space to the first
point of.the orbit, wher. “nearest” is measured using the
usual Euclidean metric. Once this point is found, the
magnitude of the difference vector between the two
points is recorded. The algorithm then proceeds by
evolving the fiducial point along its trajectory, and the
neighboring point along its trajectory, a given number of
steps of the time series. The magnitude of the final sepa-
ration between the two points is then determined, and the
contribution to the Lyapunov exponent is then simply
given us the logarithm of the final separation divided by
the initial separation, divided by the time interval of evo-

TABLE II. Lyapunov exponents for the Lorenz attractor M =1, and the number of data points is

20000.
. dn n

2 A|=9.54 kz=—6.30

3 1.1:2.42 Az="1.27 AJ=_26.5

4 A=1.68 Ay=—0.308 A=—117 A=—25.9

5 A!=l.47 2.2=0%!9 }\3=“6.3“ k‘="'l2.7 A.3="'26-5

6 A=140 A;=0.0471 A;=—4.50 A=-812 =-13.0

==26.1

A=—13.1 Ay=—24.8

8 A=1.40 %y=—0.105 Ay=—1.96 =—4.02 Ag=—5.62
Ag=—8,24 Ay=-13.1 Ag=—25.5

9 A,=1.48 Ay=—0.109 A,=—1.06 A=—2.88 Ay=—3.68
A=—5.63 A=—7.70 h=—12.6 Ay=—25.3
Accepted values of A A =1.50 X,=0.00 A=-22.5
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lution.. These contributions are then averaged ‘over the

length of the time series.

This simple scheme works to provide the largest
Lyapunov exponent because, given arbitrary initial condi-
tions for the two neighbors and an appropriately long
evolution time, the exponential growth due to the largest
positive exponent dominates the overall behavior of the
difference vectors, so that to good accuracy the net
change in the magnitude of the two vectors reflects al-
most solely this rate of growth: Note that a technical
problem exists here, in that the Lyapunov exponent is
defined only in terms of the linearized equations of
motion about the fiducial trajectory, and the exponential
divergence of neighboring trajectories can rapidly drive
them out of the linear regime. In the WSSV code, this
problem is addressed in a struightforward manner; i.e.,
when the distance between the neighbors becomes too
large, the algorithm abandons this point and searches for
a new neighbor. A suitabls new neighbor is chosen on
the basis of two criteria: first, ihe point must again be &s
close to the fiducial trajectory point as possible, and
second, the orientation of the abandoned difference vec-
tor must be preserved as nearly as possible. The process
of choosing a new neighbor using these criteria is thus
approximately equivalent to rescaling the difference vec-
tor to a much smaller size. In practical terms there is a
{ ;ade-off between choosing points which are very close to
tue fiducial point and points whose difference vectors lie
nezarly along the ray defined by the abandoned difference
vector. This problem is handled internally in the code by
a multister search algorithm. Once a suitable new neigh-
hor is determined, the new difference vector is then
evolved until it too becumss too large, and then the pro-
cess is repeated.

Because this numerical procedure is relatively straiglit-
forward, there are actually few variables necessary as in-
put to the algorithm, and hence the program is :ruch
easier to us- than other Lyapunov exponent algorithms.
There are seven basic variables which must be set to per-
form an analysis of » . ata set, :a0st of which are deter-
mined when one calculates the embedding dimension as
in Sec. II. The first four variables, which are related to
the time-delay reconstruction, are the number of points
in the data set (N), the embedding dimension d, recon-
struction time delay 74, and the sampling rate for the
data T,. The first of these variables N is usually fixed
when an experimental time series is being analyzed, al-
though some criterion for the minimum number of points
necessary for a good estimate of the Lyapunov exponent
can be given. Wulf, Swift, Swinney, and Vastano give a
generul 1ule for the minimum numbser of data points ac at
least 107, although this value can depend on the topology
of the attractor aud the relative magnitudes of the
Lyapunov exponents. Qur experience has shown that at
least twice this number of points is usually necessary for
two significant figures of accuracy, and greater accu.acy
can require much longer time series. It should be noted
that in terms of the algorithm, longer time series are re-
quired not just to improve the convergence by providing
more contributions to the Lyapunov value; longer time
se. = . 'so provide a higher density of points on the at-

tractor - "a hence there are more nearby neighbors to
choose from when replacements are necessary, making
this process more accurate,

The embedding dimension parameter d is the dimen-
sion of the time-delay reconstructed vectors y(n), and is
determined as in Sec. II. As discussed there, the dimen-
sion of the embedding space must be sufficiently large to
ensure the* none of the dynamical information about the
attractor is lost; however, needlessly large values of the
embedding dimension resuits in greatly increased compu-
tation time for the Lyapunov calculation and also in-
creased sensitivity to noise. For the example systems that
we have investigated using this method, we have chosen
the embedding dimension to be the next highest integer
dimension to the (known) fractal dimension, although for
experimental data, where one is not sure of the fractal di-
mension, one may often feel safer to choose a larger
value,

The second variable that is necessary for the time-delay
reconstruction in the program is the actual time delay

value 7,. This variable, as discussed in Sec, II, gives thes

time separation of the components of the d vectors in
terms of the number of iterates of the time series, and can
be thought of as being chosen to make the d components
as *‘orthogonal” as possible. For dynamical time series
derived from a mapping, as for the Hénon system, this
value can be chosen to be 1, since each iterate generally
represents one entire “‘orbit” on the attractor of the flow
that the mapping is derived from. For continuous
phase-spuce flows, as for the Lorenz system, one can
often use the rule of thumb given by d7,=1, where d is
the embedding dimension and 7, is here given as the frac-
tion of the orbital period on the attractor, which must
then be expressed in time series steps. Another more so-
phisticated method is to take 7, as roughly the first zero
of the autocorrelation function for the time series. The
choice of method for determining the time delay is not
crucial, however, since the reconstructed dynamics is
generally not strongly dependent on the exact value as
long as it is within a reasonable range of the correct
value.

The fourth variable T, is the time between successive
measurements in the time series, or rather the inverse of
the sampling rate. This value is not actually a variable,
but rather an additional piece of information that must
be supplied with any time series, and is used in the algo-
rithm to rescale thc Lyapunov exponents by setting the
time scale for the rate of divergence of the trajectories.
Although one may have no control over the sampling
vrte for an arbitrary set, for systems where one does have
control this parameter ic an important issue, and can
greatly affect the quelity of data. Many of the aspects of
problems that can arise are from improper sampling rates
are discussed by Muyer-Kress.*?

Two of the input variables to the algorithm are con-
cerned with setting length scales for the reconstructed
dynamics. The parameter S,,, controls the maximum
distence that the algorithm will look for neighbors when
it attempts replacement. Since we take a rough value for
the limit of the validity of the linear approximation to be
about 1% of the macroscale of the attractor, the value of
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Smay should be taken at somewhat less than this value.
Of course, making this parameter smaller will incresse
. accuracy; however, the density of points on the attractor
determines how small it can be, and making S, too
small also has the unfortunate effect of greatly increasing
the computation time of the algorithm. It is instructive
to do some experimentation with the effect of this vari-
able when analyzing a data set, however, we have found
that the 19 rule is usually u good guess. The second
scale variable is S;,, which sets the minimum distance
that the algorithm will look for neighbors during replace-
ment. The purpose of this parameter is to reduce the
effects of very small levels of noise by eliminating the
choice of neighbors which are so close that they are
within the scale of distance that the noise defines. Since
we deal with “clean” data sets throughout the discussion
in this paper, the value of S;, was set quite low. For ac-
tual experimental data corrupted by noise, a good deal of
experimentation with this variable is probably necessary,
as it is difficult to estimate the effective scale that the
noise will appear on. It should be noted that this param-
eter is only effective at reducing the effects of very small
magnitudes of noise, as we have found that S, can usu-
ally be not much larger than about 1% of S,,,,, or the al-
gorithm has difficulty finding sufficient numbers of neigh-
bors within the linear regime for replacement.

The last input parameter to the algorithm is T, which
gives the evolution time (in time series steps) that a given
pair of neighbors are allowed to evolve before replace-
ment. The value of this variable can greatly effect the ac-
curacy of the calculation of the Lyapunov exponent, for 2
number of reasons. If the evolution time is too short, the
difference vector bstween the two neighboring trajec-
tories may not have sufficient time to evolve with the dy-
namics on the attractor, and the frequent replacement
process can introduce considerable inaccuracies. If the
evolution time is too long, the neighboring points can
often evolve to distances which are greater than the
linearized regime, and so these contributions are also
inaccurate. Additionally, for attractors which may have
a multilobed structure, such as the Lorenz attractor,
enormous errors can be introduced if the evolution time
is sufficiently long to allow two neighboring points to
eventually evolve along the two separate lobes.

To choose T, for a time series produced by a map, one
or two iterations of the map is usually a good value, as
was the case for the Hénon system. For a flow, some ex-
perimentation must be done. A good general ~ule is that
the evolution time for a flow should be on the order of
to 14 orbital periods on the attractor, although this again
can depend on the magniiude of the Lyapunov ex-
ponents. When one only has a time series to work with,
an orbital period for the system can be determined by
taking a power spectrum of the time series and picking
the dominant feature, if uny. Once & rough estimate of
what the evolution time should be is obtained, it is
strongly advised to calculate the Lyapunov value for a
range of evolution times around ths rough value. The
computed values of the Lyapunov exponent versus the
evolution time will usually remain flat for some range of

«'.ABARBANEL, BROWN, AND KADTKE

the evolution times, and a value within this stable

is usually an accurate choice. "y
Using the above general guidelines, the Wolf code was.

used to determine the Lyapunov exponents of two sampie
systems for which the exponents are siready known: the

Hénon map and the Lorenz system. In both cases, all of 4 §

the parameters could be chosen ahead of time with good §

confidence, with the exception of the evolution time (T ): 3
For this parameter, a series of runs with differing Ty 8%

values were done, as a check of the stability of the
Lyapunov value with different evolution times, and to
demonstrate how this may be done with other parameters
for which good guesses are not available a priori. :

For the Hénon map (whose dimension is known to be &

1.26), we chose d =2, and N =2000, although about 1000 ¥

(=30%) would probably suffice. Since the system is °

defined by a mapping, we choose 7,=1 (this is verified
using the autocorrelation calculation, Fig. 8), and like-
wise t.=1. Since the largest scale of the map is about 4,

we chose S, to be 0.25 to 0.05. Also, since the data are .4

generated numerically, the only noise is from machine er-
ror, so we chose S, to be a conservative 1075, Note
that some experimentation was conducted with these
values, but that the result of the calculation showed A,
was not greatly affected for parameter values within
reasonable limits of the ones given, although the run
times could be considerably affecied for S,, too smail.
For the remaining parameter Ty we present a graph of
the value of the largest exponent A versus the value of Tz
(Fig. 9).. Note that there is a plateau in the value of A at
about 0.624. for values of the parameter T out to about
5, after which it drops off sharply. Note that even
though the chuaracteristic time for his map is 1, we see
that A, is stable to a reasonably large variation in Tg.
The value we obtain for A, is within about 3% of the
value quoted by Wolf et al.

For the second example, the Loienz system, a data set
was generated by integrating the dynamical equations
with a Runge-Kutta integrator, using a time step {=1
(sampling rate)] of about 0.03 sec. Since the characteris-
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FIG. 8. Autocorrelation function for x,(n) in the Hénon sys-
tem from 2000 data points.
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FIG. 9. A vs T for the WSSV method in the Hénon map.

tic time for the Lorenz attractor is about 0.5 sec, this
gives about 17 points per orbit on the attractor. The di-
mension of the attractor is known to be about 2.06, and
an embedding dimension of d=3 was chosen. The
minimum number of data points required, as estimated
by our rule of thumb, is about 5000, so we close a set of
10000 points (=N). The autocorrelation calculation
(Fig. 6) suggests a value of ¢, =13, and 7, is 0.03. Since
the maximum scale of the Lorenz attractor is about 40,
Smax Was chosen to be about 0.4 or 0.5, and S, was
chosen, by the same arguments as for the Hénon system,
to be about 197, At for the previous example, we calcu-
fated the largest Lyapunov exponent for a range of the
last parameter T and these results are shown in Fig. 10.
From the graph, one notes that A, settles into a some-
what flat region by a value of T of about 16 or so (one
orbital period) and remains roughly so until about 30
(two 1 orbital periods). There is still a considerable varia-
tion in the values of A along this region, which very likely
indicates that the convergence is still not very good and a
longer data set is necessary. The average value from this
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FIG. 10. A vs I's for the WSSV method in the Lorenz sys-
tem.
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regime is about 2.22, which is within 2.7% of the value
2.16 quoted by Wolf et al.

It is worth noting that, because of the double-lobed
structure of the Lorenz attractor, the program can often
be “fooled” by choosing two nearby initial orbits which
wind up on different lobes of the attractor, thereby giving
erroncous contributions to the averaged exponent. In
this sense, the Lorenz system is 8 somewhat difficult case
for study using the fixed-time-evolution program, and
hence the results can bte somewhat less accurate than
would be expected. i

Calculations of the largest Lyapunov exponent were
carried out for other systems beside the two examples
above, and in all cases the worst errors were on the order
5%, with most values being about 1-2 % of the expected
exponent. We conclude that, at least for the largest posi-
tive exponent, the above code is relatively simple to use
and provides reliable and reasonably accurate results.
Although we have not tested them yet, more elaborate
versions of the code promise greater accuracy, as well as
the calculation of the rest of the positive Lyapunov ex-,
ponents. The one drawback of the method is that it does
not allow for calculation of the negative exponents of the
spectrum, although current research suggests that it may
be possible to capture at least the largest negative ex-
ponent using time reversal of the data sequence.

Some experimentation was done with calculating the
largest Lyapunov exponent for a few other systems, and
in all cases the worst errors were on the order of 4-5 %,
with most values being within 1-2 % of the expected ex-
ponent. We can conclude from these studies that the
WSSV code provides a very simple and reasonably accu-
rate way of determining the largest Lyapunov ¢ ponent,
and does not, require the excessive amounts of data that
some of the other algorithms seem to need. For applica-
tions where only the dominant behavior of the spreading
of nearby trajectories is needed, and where it is not neces-
sary to know the remaining Lyapunov exponents, this al-
gorithm can prove very useful. )

C. Lyapunov exponents from the map F(y,a)

Whatever method one chooses to use for determining
the Lyapunov exponents from the data, and we liave ex-
amined only two possible methods proposed in the litera-
ture, we must now establish a way to express these same
quantities in terms of our map F(y,a). A direct tran-
scription of the methods of Shimada and Nagashima,'
Benettin, Froeschle, and Scheidecker,'é or others would
lead to a correct prescription, but not one which is easily
used in the optimization or ftting we wich to do uging the
function F(y,a). The point is that one can achieve better
results in this fitting if one has available a useful analytic
formula for the derivatives of the constraints with respect
to the parameters a. We will choose then a slightly
different way of expressing the Lyapunov exponents in
terms of the map F(y,a) than appears in the literature.
Ours may be a useful technigue in itself.

Lyapunov exponents characterize the way in which
neighboring points, small areas, or small volumes near
the orbit of interest evolve under the mapping. To find
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them one linearizes the mapping y(n +1)=F(y(a),a)
Around a given orbit y(1),y(2),...,y(N). Small devia-

. ,.-tions from this orbit, call them 6y(n), cvolve as

Sy(n +1)-—M(y(n))6y(n) Vo n

where N R I PR
S

s R
H PY3

{M(y)]u a Fk(’r‘) T B g ARG
S dsud g e
is evaluated along the orbit of interest. The Lyapunov

cx nents are found from ths clgcnvaluu of the matrix
M%(y(1))

ME(y(1))= M(y(K))M(y(K—-l)) - M(y(1)),

which has information about.the orbit generated by
F(y,a) beginning at y(1). Indeed, calling the Lyapunov
exponents A, i=1,2,...,d the eigenvalues of M*(y(1))
are exp(7K4,) in the hmxt as K— . The 7 in this ex-
pression is the same one we set to unity in Sec. II. For
the FHénon system (a map) r is 1, while for the Lorenz sys-
tem (an ODE)} r=0.03 (cf. the Eckmann method in this
section).

The familiar method of finding thm A;'s (Refs. 10, 15,
and 16) is to apply the matrix MK to an arbitrary vector
w. Then forming

——In [ﬂMﬁW_lL
K wl

yields the largest exponent A, for large K. To find the
next largest exponent A, one applies M* to the elements
of an outer product w! X w?, and calculates the logarithm
of the norm of this vector for large K. This gives the sum
of 4; and A,. Continuing in this fashion, the full
Lyapunov spectrum may, in principle, be extracted.

While the expression of the A,’s as logarithms of the
norms of various vectors to which M* has been applied is
correct, it presents serious problems in evaluating the
derivatives with respect to the parameters a of the map-
ping F(y,a) from which M is formed. So we take a
slightly different approach.

We note that the trace of the matrix M* contains the
information on Lyapunov exponents we desire. Our first
observation is that the expression

9

d
_tr(MF)="3 exp(rKA,,)

mwl

allows us to find the largest exponent A, by
=i K
A ﬂ(ln[tr(M )] . {10)

in the formal limit that K — . This expression is much
more conducive to differentiation with respect to the pa-
rameters a (recall that M is a function of a) since we have
to dcal with the logarithm of a simple scalar, the trace of
MX, rather than the norm of a vector [|[M¥*wl| as in Eq.
9).

One can find an expression for the next exponent A, by
observing that the combination

[teiMX)?—tr( M) |
where
M2K(y(1))=M(y(2K))
XM(y(2K —1)) -+ M(y(Z))M(y(l))
the sum of A, +A, by
= ——— Kyv12 2K
A A, TKIn[[tr(M )2—tr(M?K))

for large K. It is straightforward to construct expressions

for the sum of exponents up to order m by recognizing :3%:
the terms in the above logarithms as those of an expan- 4%
sion of the trace of the m™ power the matrix -

(MK)U —tr(MK)SU.

In any case, our procedure is now clear. Use whatever ‘i

means available to evaluate the A,;'s from the data. Then
form the indicated logarithms of combinations of traces
of the matrices M¥, M?X etc. as computed from the
parametrized mapping F(y,a). Equating the A,’s evalu-
ated from the data to the expressions for the A;’s in terms
of Fly,a) gives us a set of d constraints. We impose these
constraints on our choice of the parameters a in conjunc-
tion with the minimization of our cost function.

Our actual practice restricts attention to the largest
Lyapunov exponent A, since that is the only one we know
how to rchably extract from data. Thus only the trace of
MPZ is needed in our constraints. It seems to us a matter
of some importance to devise accurate methods to deter-
mine the full spectrum of Lyapunov exponents from data.
They would be useful in the program we are engaged in,
and they act as classifiers for nonlinear dynamical sys-
tems with broadband power spectra. In the case of
broadband spectra, sharp lines are not available for clas-
sifying and one must turn to the kind of dynamical in-
variant we have here,

IV. INVARIANT DISTRIBUTIONS ON THE ATTRACTOR

The frequency thh which orbits y(n) visit regions of
the phase space R? defines an invariant distribution func-
tion, p(y), which is formally defined for the mapping
yin +1)=F(y(n)) as

ply)= lim — 2 89y — F"(y(l)))— lim pyly). (11)
ksl

In a similar fashion, the invariant distribution for a nu-
merical data set w(»), n =1 _ . Nisgivea by

=k _l_ X dfy —
ply) Nh_r‘nw Nk%& (y—y(k)). (12)

Eckmann and Ruelle'® discuss the features of p(y) at
some length. In particalar, they address the question of
the dependence of p(y) on the initial point y(1). They
state that any two initial points in the basin of attraction
will lead to the same p(y). In this sense p(y) is invariant.
For a dynamical system with two attractors it is possible
for their basins of attraction to be intertwined in 2 com-
plicated way. Any uncertainty in the initial point y(1)
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due to noise, machine round off, etc., may effect our abili-
ty to say with certainty the attractor to which a particu-
lar y(1) will go. Also, in the absence of noise there may
be particular y(1)'s (often, but not exclusively, on a set of
measure zero in RY that lead to nongeneric orbits. An
example of this type of nongeneric behavior would be an
unstable fixed point or periodic orbit in the presence of a
strange attractor. In any event we will assume that noise
levels are low and the only nongeneric orbits are unstable
and of measure zero in the phase space. In this case,
once a particular y(1) has moved beyond its transient
stage the frequency with which it visits various portions
of the attractor is, by definition, p(y).

The complete invariant density p(y) has too much in-
formation in it for our purposes. (We could not constrain
a cost function to reproduce every point on the invariant
density without an inordinate amount of work.) Any
finite sequence of N points has a finite resolution on the
attractor. That resolution is approximately N —w‘,
which is the order of the mean distance of N points on a
d ,-dimensional set. Furthermore, we will never actually
resolve the detailed 8-function resolution implied by Eqs.
(11) and (12).

To handle this matter of finite resolution we introduce
a complete orthonormal set of functions y,(y) defined on
R? which can serve as a basis set. We then expand p(y)
in terms of this basis

G
p(y)=3 B.yly). (13)
p=1
Truncating this expansion at some finite order (u=G)
provides a finite-résolution representation corresponding
to whatever information we have on p(y). The
coeflicients B, will be the invariants of the dynamical
process which characterize p(y) within a given basis
¥.(y). After our discussion of how to select the ¢,(y)'s
we will establish how one extracts B,,’s both from the
data vectors y(n) and from the parametrized map F(y,a).
Equating the B,’s from the data to those from the map
will be our final constraints on the cost function C(X,a).
While any complete orthonormal set of functions ¥uly)
would do to determine our B,,'s, some are more appealing
than others. For example, Fourier series formed by tak-
ing

Yly)=e™, m=(m,,m,,...,mg,)

are formally fine. However, since the attractor is occupy-
ing only a small portion of R?, most of the work per-
formed by the Fourier representation of p(y) will be ex-
pended in making p(y) vanish off the attractor. What we
seck are orthonormal functions concentrated on the at-
tractor, so all the work in the expansion of p(y) is expend-
ed exhibiting structure where the attractor is located.
This would also result in the need for many fewer B,
than required for Fourier series or other familiar choices
for ¢, (y).

An optimal choice using information in the data set is
constructed as follows.??" Take the total data set y(n),
n=1,2,..., and divide it into two portions. The first
portion (of length N) will be treated as the data we are

trying to model. The second portion of the data set (of
length N') will be used to construct orthonormal func-
tions. These orthonormal functions will be the y,(y)'s
that we will use in our expansion of p(y), shown in Eq.
(13). To explicitly construct these functions we further
divide the second portion of the data into G groups of
length L (N'=LG). Each group is a sample of the invari-
ant attractor. If L is large enough, each sample is a
significant look at p(y). Treat each of the G data sets as
an independent sample of p(y) and form the invariant
distribution for the ath sample )

L
=13 8y —~y(k,a)), (14
L k=1

with a=1,2,...,G. The data point y(k,a) is the kth
member of the ath sample. Of course, the mean density
of the G samples is just the total invariant density of the
data set of length N',

G .
pI=% 3 paly) (15)

aw]

From the G samples p_(y) we form the following phase-
space correlation function

G
R(z,w)=-zl': 2 PalZ)po(w) . (16)
c=}

It can be shown??% that the normalized eigenfunctions
of this correlations function are the optimal eigenfunc-
tions for expansion of functions localized on the attrac-
tor. Optimal means that these eigenfunctions provide the
best representation in a least-squares sense of the infor-
mation in p(y) when expressed as a finite series in an
cigenbasis. The label a is to be treated as a sampling in-
dex from a set of independent looks at the data each of
which is to be thought of as selected from a uniform sta-
tistical distribution of invariant densities. The various
averages over a then appear quite natural,

The requirement that ¥, (y)’s be an eigenfunction of
R(z,w)leads to

[d% Rtw, 2y (2)=py,(w) . (17
The ¢,(y)’s are normalized es follows:
[d%w g (Wi, (w)=8,, . (18)

As the number of samples G becomes infinite, the set of
eigenfunctions becomes complete in the usual least-
squares sense. If we insert Eq. (16) into Eq. (17), we see
that for finite G, R{w,z) becomes a finite sum of separ-
able kernels. It is easily seen that in this case the eigen-
functions ¢,(y) must have the form

G
Ply)=3 Chp,y). (19)

a=|

The eigenfunctions defined in this fashion are localized
near the attractor, just as we wished. This follows direct-
ly from Eq. (19) since ¢.(y) is made of the p,(y)'s which
vanish off the attractor.

Inserting Eqgs. (16) and (19) back into Eq. (17) reduces

hg ™
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the cigenvalue equation *o a finite matrix proble™ The
coefficients C£ are the G vectors which are cigen:vectors

. of the G X G matrix
=L [
Aw-——G—fd 2 p,(z)pglz) , ‘ (20)
i.e.,
G : j
' 21)

2 chg =].1C'; .
=1

We now turn to the normalization condition Eq. (18). In-
serting the representation for ¥,(y) given by Eqg. (19) into
Eq. (18), and using the relationship between the C4’s and
A g given by Egs. (20) and (21), dictates that the vectors
CH obey the following normalization condition:

G
S, CiCE =(uG)~'5,,
a=]
(Incidentally, this equation ‘alsc shows that all the eigen-
values p are positive.)
Formally, the eclements of p.(y) are & functions.
Hence, numerically speaking, computation with them is
really not possible. We choose to replace 6% x) by

22)

] —hils
5%x)— 5= r (Ix])
(1r(7))‘“2 =/5s,
which, when @ is small, represents only a smalil loss of
resolution in calculating p,(y). f; also has the same in-
tegral as the 6§ function it replaces. To thls approxima-
tion

L
pl)=1 S flly—yik,al), @3)
Lk=l
and Eq. (20) becomes
! an
A= 1
* \em | GL?
L
X 3 expl—lylk,a)—y(j.B)*/&] . (24)
kj=1

We are now in a position to calculate our optimal
eigenfunctions y,(y) from the G data sets. Use Eq. (24)
to numerically calculate the G X G matrix 4 ,5. Next cal-
culate the eigenvalues p and eigenvectors C4 of this ma-
trix, being sure to normalize them according to Eq. (22).
We can then form the eigenfunctions ¥,(y) by using the
normalized C%'s and the p(y)'s [in the form of Eg. (23)]
in Eq. (19).

in Fig. 11 we show p,(y) evaluated for the Hénon at-
tractor from a data set L =750 steps in length. These
data are displayed on a grid of 75 points in each coordi-
nate direction. The other densities are qualitatively simi-
lar in that they are very spxkcy However, the exact posi-
tion and size of the spikes varies from one sample to the
next. The y,(y)’s look like the p,(y)’s except that they
are allowed to be negative is some regions. This is not
surprising since they are composed of the p(y)’s and the
weights (given by the C”’s) are not required to be positive
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[cf. Eq. (19)].

We now have a set of G orthonormal functions 'ﬁ,‘(ﬂ 3

extracted from G samples p(y) of the invariant distribu.

tion. We can use the orthonormality condition, Eq. (18); §
to project a particular B, out of Eq. (13), o

(25) e

B,= [d¥piyW,(y) .

Incidentally this shows the B, are invariants of the map- $.
ping since they are integrals of ¥, with the density p(y) -4
(cf. Sec. I). If we insert Eqgs. (12) and (19) into this expres-

sion weget
B ———2 z Chpoly(k))
a-lk-l

1 X G L CI‘;
N kgl agljgl (TTE)dlz

Xexp[ —ly(j,a)—y(k)|? /5]

26 ™.

where we have used Eq. (23). Equation (26) has been used
to numerically calculate the B,’s from the data.

This should make it clear how one evaluates the B, 's
from the N'=GL data vectors y(k,a) in R%. The B,'s
are the G numbers characterizing the invariant dcnsxty
ply) by its projection on the optimum basis vectors
¥,(y). Now we wish to see how to evaluate them from
our parametrized mapping F(y,a). The G equalities be-
tween these two evaluations of B, form our final con-
straints on the minimization of the cost function C(X,a).

To determine B, from the map F(y)—we suppress the
parameters a for 8 moment—we return to the definition
of the invariant density as expressed by Egs. (11) and (12).
Call 4, the projection on ¢,(y) of each term in the sum
in this equation:

A= [ d% ¢, (y)6%y—FXy(1)))
=y, (Fy(1)) .

We interpret E<1 (27) as saying that A, (u) is the projec-
tion of 8%y —F*(y(1))) onto the orthonormal eigenfunc-
tions ¥,(y). Using this interpretation we expand the &
function in terms of ¢,(y) to get

27

G
SAy—F y(i)=3 Alul,ly).
B

For large N, Eq. (11) can now be written as

G '1 ‘% )
- Alu
Nk-l

ply)= Yuly) .

sl

Comparing this equation to Eq. (13) indicates that

[y

71

1 N
W—z P (FXy(1))) .
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FIG. 11. First density for the Hénon map for L= 750 and G'=5.

From Eq. (19) and the definition of p,(y) we rewrite this
equation as

1 N L G .
B,,=7vfk§l En zl Cu8Uy(j,a)=F4y(1)) | .

This expression requires quite high powers of F(y,a) to
be evaluated, and we cannot be confident that such high
powers of the parametrized map are numerically accu-
rate. When the map is near the correct or optimum map,
then we are accurately reproducing y(k +1) from y(k) by
a single application of I(y,a). We utilize this to replace
F¥(y(1)) in the last formula with F(y(k)). The expres-
sion for B,,’s then becomes

1 N

G L
BEd( (i ) —
WSWL 2, 3 3 CE8(y(j,a)—F(y(k)))

a=] fe}

G L Ck

N

1
NL (2,

a=}j=] (‘)‘)’(T))d/2
Xexp(—ly(j,a)—=F(y(k)I*/a) |,
(28)

using our smoothed replacement for the § functions in
the invariant density.

This is the equation we will use to calculate the B,’s
from the map. To implement it we take all N points in
the first portion of the data set and iterate them once
through the map F(y,a). When F(y,a) is near the
correct map iterating the data set once will result in
points that are still on the attractor. We then evaluate
the Gaussian, and numerically sum all the contributions
between the iterates of the data set and the points in the

G samples.
We close this section with an observation about the

)?p’s. By combining the definition Eq. (27) with the iden-
tily

84y—~F-*y(1))
= [ d%w 6%y —F(w)s{w—Fy(1)),
we can derive the recursion relation

.Ak.;.](#):sz‘-Ak(/l-') ’
W

in which the transition matriz T is given by




.. . Jn a matrix notation the recursion relation A, ., =T4;
" leads to an expression for

1 L
/ Yo yNNI=pL)=T 3 Ak
=]

which is ’

(1—T)pL(p)=i<1—TL>A,..

Since th_,.,p,_(p)—— fd% ply)$,(y)=B,, this shows
that the B, arc the components of the eigenvector of T
with ci'jcnvaluc unity and further that ali other cigenval-
ues must lie within the unit circle, if the expression, Eq.
(11), for p(y) converges. By our assumption that the p(y)
we observe is unique, we infer that the eigenvalue unity of
T is nondegenerate. We tried to implement this observa-
tion about the B, to yield a method for numerically
determining them from Eg. (29) (Refs. 18 and 19), but
found roundoff error undermined our efforts.

V. OPTIMIZATION OF THE CONSTRAINED
COST FUNCTION: PARAMETER DETERMINATION

A. Analysis for the Hénon map

Our first application of the methods described above is
to data generated by the Hénon map of the plane to itself.
Data were created by iterating the map from some initial
condition and discarding the first 50 points of that data
set. Two data sets of x,(n) were created this way., The
first had N'=3750 points which we divided into five
groups of 750 points each. These groups were used to
create the densities p,(y), and the phase-space correlation
function among groups was used to generate the eigen-
functions. The second data set was then used to select
samples of length N=750, 1200, and 1752 for our
analysis.

We first studied the distribution of Euclidian dis-
tances among the two vectors y(n)=(x,(n),x,(n +1)),
n=12,...,N—1formed from the data set. On the nat-
ural scale of the attractor, which is order unity, the
minimum distance was always order 1073-107% This
led us to choose the parameter o in our maps to be
0 =5X107% 50 that each data point, at least for N 2 500,
would have neighbors. We varied ¢ by a factor of 10 or
80 with no qualitative differences in our results. A
thorough parameter search would vary o in the con-
strained minimization of the cost function.

Next we chose to use four parameters & in our set and
took the powers m; and m, in F(y,a) to be m;=4,
m4=5. We did not further vary these parameters. Our
choice of four a’s rested on our knowledge that we would
be constraining our cost functions by only the largest
Lyapunov exponent A, and the projection B, of p(y) on
the eigenfunction ¥,(y) with the largest eigenvalue. Four
seem d a minimum reasonable number of parameters,
and s.nce the work required to search large parameter
sets can become significant, we were content with four.
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" the map F(y,a) we felt we could trust.

In effect, we had two free parameters in F(y,a) when thg
values of A, and B, were specified.
Our final a priori choice was on the values of X in the-'
predictor Eq. (3). We took three terms here since we:
were being quite conservative in how many iterations of
Then, furthery
reflecting our sense that iterations of F(y,a) could be- &
come unreliable, we chose X,=0.8, X,=0.1, and':
X,=0.1. Once again the X’s could be parameters which
vary in our constrained minimization. We found that.
varying the X's by 20% or so did not qualitatively ?
change our results. In the case of the Lorenz attractor -
study discussed in Sec. V B we report results for X, =0.5,
X,=0.3, and X;=0.2, and note that the cost function
changes by =~20%. ¥
We chose to sumply fix the X's for purposes of this pa- v,
per. Clearly, the X’s can be varied along with the a's, o,
and mj, ..., mp, if one wishes. Ours is a first try with
the F(y,a) we have chosen in fitting the data and meeting

_.gc P

. ~'w
N
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" the invariant constraints. The feasibility of accomplish-

ing this seemed daunting enough when we set out. We
expect to include many more parameters in future work
in this area.

One additional important matter deserves note before
we proceed to the discussion of our numerical results.
The maps F(y,a) as we carry out our search over the pa-
rameters a have very little ability to reliably fit the given
data fer most a. Only when we arrive near a (con-
strained) minimum of the cost function can we be very
confident that our map is reasonable. Until the map is
near the optimum map points in the data set are quite
often mapped far od the attractor. For numerical stabili-
ty in our search algorithms we need a method to identify
orbits which are leaving the attractor for nonoptimal
values of a and return them to the neighborhood of the

attractor. %

Maps of the form we have chosen have the feature that
points far off the attractor, as defined by the data set it-

LI

self, are mapped to y=0. There is no reason to expect

the origin of coordinates to lie on an attractor which has

d 4 <d and is quite sparse in RY but we choose to always .z

translate our data set so one of its points is the origin.
This changes nothing about the signal processing issues
we address in-this paper and makes our parameter
searches numerically sensible.

With this translation of the origin, an orbit being gen-
erated by F(y,a), when a is not optimal, which tries to
depart significantly from the attractor is sent back to .
y=0, which is now on the attractor. When a is near its
optimal values, this feature is operationally unimportant

because the map is tracking the data very accurately. Wl

Our experience indicates that if one is trying to create
global maps F(y,a), as we are here, some form of “orbit
reinjection” will be required to give numerical sense to
the whole process of searching parameter space to mini-
mize the cost function. The problem becomes more im-
portant as d grows, since the attractor of dimension
d, <d occupies “less and less” of the full volume of the
phase space. If one is making “fits” to the data by
numerous local or nearly local polynomial maps as in the
work of FS, the issue raised here is absent. Global maps
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.have an economy of parameters and a potential ease of
interpretation; local maps appear to have an advantage of

" ‘calculational speed. We have no oversll judgment of 2
way to choose between these alternatives.

Our results for data from the Hénon map are shown in

Table I1I. The parameter searches were carried out using
the FORTRAN package NPSOL.*!"" One of its authors, Gill,
was kind enough to consult with us extensively on its use
and on the interpretation of its output. For each value of
the number of points in the data set, namely, N =750,
1200, and 1752, we report seven quantities for each of
three cases: (1) unconstrained minimization of the cost
function; (2) minimization constrained by A,
(AP*?=0.408); and (3) minimization constrained by both
A, and B,. In each case we report the value of the cost
function normalized by the sum of the squares of the Eu-
clidian lengths over all data vectors, the values of the a's
at the minimum cost function, and the deviations AA,
and AB, from the values of A{*"* and B¢** determined by
the data. The allowed tolerances on these deviations are
set in NPSOL by the user. We typically required the rela-
tive magnitudes of AA, to A, and the same for B, to be in
the range 0.5-5 %. This is not a limitation of NPSOL, but
it seemed quite accurate enough for our purposes.

A look at Tabie III reveals a consistent pattern. Un-
constrained optimization resulted in a cost function with
a rms deviation of our predictor from the data of 0.1% or
smaller. Not surprisingly when we track the data so ac-
curately, the value of B, comes out quite precise. The
‘value of AP for this best least-squares fit is remarkably
bad. Indeed, in our examples this quantity was actually
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negative, which indicates the absence of chaos for the
parametric map.

When the A, constraint is imposed, the parameters a
change, but we regard their specific values as of inciden-
tal interest here. More important is the observation that
the rms value of the cost function—the bare measure of
the quality of the fit—remains about 0.5% while the
Lyapunov exponent is now accurate to about 1% or
better. Of course, having moved away from the very best
point-to-point least-squares tracking of the data, the.ac-
curacy of B degrades to =10%. Finaily, imposing both
constraints we achieve 0.5% or so in the rms error for the
cost function, highly accurate A,, and somewhat better
B, values.

The message of these calculations is that the procedure
we outlined in this paper is both feasible and highly accu-
rate. The few scalar numbers, “he cost function, A;, and
By do not tell the whole story. One can take the map
with the optimum a’s and calculate a new orbit starting
from some new phase space point y™™(1): y™™(1),
»o™(2), ..., and compare the new orbit to that generat-
ed by the Héenon map starting with the same initial point.
The data so generated look the same when plotted as a
sequence of two vectors, but this temporal representation
contains very little useful information, so we do not show
it

What is more important is the fact that our predictor

L
yim +1)= 3 X, FXy(m—k+1),a) (30)
k=]

.

accurately predicts. We have taken numerous points

TABLE III. Optimization results for Hénon map data. C(X,a) is shown with and without invariant constraints.

, N1
' Fly,a)= 3 y(j+1)g(y,y(j)a))
w-r 1™ L
3 lytk+1=3 x,FAy(k —j+1),2)]2
C(X,a)=~"t =
3 yim)-y(n)
avl
X|=O.8 X2=O.1 X;=0.l
Number of points=750 A¥#"=0.408 B{*=3.4739
C(X,a) a, a, a, a, AL ABT™Y
Unconstrained 4,016x1077 7.5347 1.3289 —0.7041 0.1485 —2.0098 ~5.70%10"?
A 4.77X107¢ 6.6855 20.6948 —0.1714 0.0956 1.6X107¢ 0.223
AnB, 206X 1073 03422  1.1169 0.3766 —0.05586  4.23X10™? 0.140
Number of points=1200 A#*=0.408 B¢"=3.388
C(X,2) a, a, ay a AR ABT*
Unconstrained 3.41Xx107¢ 7.5217 2.9658 —0.3145 0.07502 —1.676 -9.85X10™?
A 1.1297x 1073 8.4520 26.7454 0.2686 0.01177 —6.32X10™* 0214
A,B, 2.38%103 6.6093 19.6341 0.083 62 —0.01087 —1.1x107* 0.198
Number of points=1752 A#"#=0,408 B{**=3.369
C(X,a) a, a a, a; AAP ABT*
Unconstrained 3.5359x 10”7 8.4093 6.0546 —-0.1497 0.023 15 —1.211 —5.80%10"?
A 1.7284 X 107? 3.1671 9.8576 —0.1120 0.02743 —6.512x1073 0.2605
A, By 2.54%107% 5.8314 18.446 12 0.1832 -0.028 18 1.005%10™* 0.2466




from our data set and evolved them forward by use of the
predictor. We find we are able to track the actual data to
the 1% level, seven to ten steps along the orbit all around
the attractor. This means that iterates of our optimum
map FX(y,s) are accurate to & ~7-10, far beyond our
original safe choice of k =3, The implications of this re-
markable accuracy for prediction and control of non-
linear chaotic systems are transparent.

B. Prediction for the Lorenz system

We now turn to the application of our methods to the
Lorenz system, defined by Eq. (8). These equations were
originally motivated by an attempt to model atmospheric
phenomenon using only a few degrees-of-freedom dynam-
ical system. It was one of the first systems known to ex-
hibit an attractor of fractal dimension, or & strange at-
tractor, and consequently to connect this with the ap-
parent chaotic motion of the resultant dynamics. The
primary concern in modifying our previous techniques
for use on the Lorenz system will be (i) the jump to a
three-dimensional embedding space, which will require
much longer time series to properly fill out the attractor,
and (ii) the large difference in the macroscale of the two
attractors, which will require the rescaling of some of the
variables we have previously defined. We will first, how-
ever, give a short review of some of the characteristics of
the Lorenz system.

For the parameter values o=16.0, r=45.92, and
b=4.0, the Lorenz system possesses a strange attractor
whici: has hecome one of the classic examples of non-
linear science. The suucture consists of two nearly flat
lobes connected, roughly at a point and angled somewhat
with respect to one another. Hence the iocal dimension
of the attractor is essentially two, however, the minimum
embedding space required is three. Note that the motion
of the phase-space orbits for the Lorenz systems is con-
tinuous, i.c., a flow, as opposed to that of the Hénon sys-
tem which is a mapping. The discretization of the
Lorenz orbits after phase-space reconstruction, and the
density of points along an orbit, is therefore due to the
choice of a sampling rate in the measurement of the time
series of data. This sampling rate therefore can be
thought of as setting a time scale in the reconstructed
picture of the attractor. In turn, this time scale deter-
mines the time-delay values for the method of phase-

-space reconstruction used in Sec. 11, the evolution times
for Lyapunov exponent calculations, etc. A discussion of
optimal ranges of sampling rates, and the problems which
occur when sampling rates are too largc or small, is given

In praciical applica-
tions, of coursc, one oftcn has no control over the data set
one is presented with, although too frequent sampling
can often be remedied by simply throwing away data.

To investigate the behavior of our prediction technique
on a system with a somewhat larger embedding space, we
chose the Lorenz system as a test case with known pa-
rameters, as was done with the Hénon system. An “ex-
perimental” time series was generated for the Lorenz
equations, Eq. (8), using the parameter values listed
above, by a Runge-Kutta numerical integration scheme
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with a fixed time step of 0.03. A data set of the x; vari-
able consisting of approximately 20 000 points (after tran-
sients) was generated. We used the same time series for
all of our numerical runs. :

As we have stated above (cf. Sec. II) we chose an °
embedding dimension of three. Note that in an actual ex-
perimental situation, a more cautious choice of four
would also be reasonable, although this would have in-
creased our computational requirements by a significant

amount. For the choice of the delay time constant 78 .

number of different choices could be made. Since the de-
lay time reconstruction is rather weakly dependent on
this constant, provided one is within certain limits, there
is no unique choice for this variable. Qur final choice was
motivated by the desire to have the reconstructed attrac-
tor look most like the original Lorenz attractor. This re-
sults in a time delay of two time steps. For an actual case
where one would have no a priori sense of what the at-
tractor looks like, the methods of Sec. 1I are, of course,

recommended. A feel for the required density of points 32 '

can also be obtained by calculating the minimum
nearest-neighbor distance, and perhaps the frequencies
that a range of somewhat larger neighbor distances
occur, and comparing this with the “macroscale” of the
attractor (i.c., the maximum ranges of the coordinates of
an attractor),

The embedding dimension and delay time comprise the
two parameters necessary to correctly reconstruct the dy-
namics of the systems attractor, and hence is the first step
in setting up the prediction method. We now turn to the
changes necessary in the numerical algorithm when we
consider the Lorenz system.

The most significant difference between the prediction
models for the Hénon system and for the Lorenz system
is that of the size of the time series required for the
phase-space reconstruction. Because of the increase in
the dimensionality of the embedding space from two to
three, the number of phase-space points required to per-
form our procedure increases dramatically. The reasons
for this is clear. Our prediction functicn ¥{v,a) requires
that most points have a significant number of nearby
neighbors, i.e., points within distances of a few Vo values
so that a good “mapping” of the local phuse space
around a particular region is obtained. Additionally,
nearby neighbors are important io obtain good numerical
approximations to the gradients of the objective and con-
straint functions. Since the number of points required to
yield a given mean nearest-neighbor distance is consider-
ably larger for a volume than for an srea, the number of
points required to properly fill out the attractor is much
greater for a three-dimensional embedding space. In Sec,
Il we presented general msthods for determining the
number of data vectors needed for a given embedding di-
mension d. For our particular analysis of thic Lorenz at-
tractor reported here, we found that the minimum num-
ber of points that gave reasonable resuits to be sbout
6000. For the numecrical experiments reporied in Table
IV we used data sets with 6000 and with 8000 points.

One final change in the numerical parameters for the
prediction code is in the number of matrices that are 1o
be multiplied together to obtain the Lyapunuv expon2nt
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TABLE IV, Optimization results for Lorenz attractor data, C(X,a) is shown with and without invariant constraints.

N-1
e e . v Fly,a)= 3, y(j+1)g(y,y(j)a))
’ - .12 'y :-.'. N-' I-' L -
. - 3 lytk+1)=3 x,Flylk —j+1)a)
G e wo ] CX )= =
P L TR L HE IOt L TR I yin)yin)
o T /( T X =08 X;=01. X,=0. '
e Number of points=6000 Af**=1 51 )
C(Xyl) a, aj ay a, AAT .
Unconstrained 2.51672X10™* 57.1977 0.08768 10.2388 —0.043 58 —4.100X107?
A, 2.51672Xx10™° 57.7977 0.090 44 10.2388 ~0.043 35 —1.000% 102
..~ . Number of points=8000 A{**=1.5{
C(Xa) . « :+ a ay ay a, AAT?
Unconstrained 1.87051X10™% ** ** 51.79T7 0.085 89 10.2392 —0.03677 —6.162X 102
A, 1.87051%x10™3 57.7976 0.093 52 10.2392 —0.03762 —1.101X1072
X|=O.5 X2=0.3 X;=0.2
Number of points=6000 A¥*=15]
C(X,a) a, a, a, a, AL
Unconstrained 3.22371X107% 37.1460 0.0201 0.4224 0.00 —-1.0706
A 3.22372x107% 37.1459 0.0581 0.4224 0.020 16 —1.000x107?
Number of pcints=8000 A" =1.5]
C(X,a) ay a2 ay dq AAT*P
Unconstrained 2.39596Xx107* 81.1459 0.05589 24222 0.00 —0.8307
A 2.39597x107* 81.1456 —0.1270 24226 9.0809%10~* —9.999% 10~}

from the mapping function. Since each iteration of the
Hénon map represents a significant evolution of the sys-
tem, the multiplication of 500 Jacobian matrices for the
Lyapunov calculation represents a good average over the
phase space, and results in fairly good accuracy of the
finel value. However, each step of the time series for the
Lorenz system represents much less evolution time for
the dynamics. It was necessary to experiment with the
number of matrices required to give good convergence.
It was found that about 1000 matrix products gave a
reasonably good convergence to the final value, but was
still not excessively computationaily intensive.

To complete the formulation of the prediction model
for the Lorenz data, it is necessary to pick the exact form
of the mapping and cost functions that are to be mini-
mized. We first discuss the choice of the polynomial
terms which multiply the exponential in the mapping
function. These terms are defined. as for the Hénon
analysis, with the intention of giving the exponential
form in the mapping fur ction a longer “tail” by adding
multiplicative polynomial terms to it. As for the Hénon
analysis, we chose to use four polynomial terms in the
mapping function, and hence have four variables in the
minimization fit. The first coefficient is, of course, the
constant term, and the second again multiplies the linear
term that expresses some dependence of the mapping
function on the Lyapunov exponent. Therefore there
remains to be determined the powers of the last two poly-
nomial terms.

In choosing the values of the exponents of the remain-
ing two polynomial terms, we recall that we wish to
clongate the tail of the exponential term in the mapping
function to make it feel more of the surrounding neigh-
bors. However, we do not wish to make these exponents
so large that we increase the scale well beyond that which
we sct by o. After some experimentation, we chose
m =3 and 6 as the two powers for the polynomial terms,
although this is by no means the only possible choice.

The second set of parameters of the minimization pro-
cedure which need to be chosen are the X's which appear
in the definition of the cost function Eq. (4). These
coefficients weight the different iterates of the map F(y,a)
and essentially determine how many iterates forward we
wish the map to accurately reproduce the data. For the
Hénon analy.is, we chose three X's with values
(0.8,0.1,0.1). Our choice indicates a desire to weight the
first forward iterate very heavily, while giving the second
and third iterates only minimal importance. This set of
values was chosen primarily becau.-: the Hénon system is
a mapping, and each iterate represents a large step in
evolution of the original system. On the other hand, the
Lorenz system produces a flow in phase space, and the
time step we chose for each iterate of the time series
represents a rather small amount of forward evolution of
the system. Thus we choose to weight some of the multi-
ple iterates of the map more heavily than we did for the
Hénon system. We have therefore presented data for the
Lorenz system with two different sets of values for these
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parameters. In one case we used the original weights of
The Hénon system (0.8,0.1,0.1). For the other case, we

» weighted the multiple iterates more heavily, namely,
(0.5,0.3,0.2). Note that we could have easily chosen to
take more than two multiple iterates of the system. How-
ever, for the sake of simplicity and comparison we chose
to use two as for the Hénon system. We also point note
that the X's like the a's could be made variables in the
minimization search; we will do that in our further work
in this matter. .

Finally, to determine "a value of the parameter o
(which sets a characteristic scale of distance over which
the mapping function is influenced by neighbors), it is
necessary to experiment with different values by actually
doing a number of minimization runs. One can, however,
make an a priori guess by considering two factors. The
largest value that o can possibly have will certainly be
the scale of the linear regime for the system. This is very
roughly about 1% of the attractors macroscale, as men-
tioned previously. Hence o should be considerably
smaller than this value. Additionally, the smallest value
that ¢ can possibly attain is given by the smallest neigh-
bor distance of the data set, and should be at least one to
two orders of magnitude larger than this value. Within
this range, o must be chosen with some experimentation,
We have found that typically, the value of the C(X,a) at
its minima will be relatively large for larger values of o,
and decreases until a threshold in o is crossed. For
values of o smaller than the threshold value, the minima
of C(X,a) becomes a great deal less, sometimes by an or-
der of magnitude or more. We recommend that ¢ be
chosen somewhat smaller than this threshold value, how-
ever, not too much smaller as it is still desirable to have
as much of the surrounding phase space as possible con-
tribute to the mapping of each orbital point. For our ex-
periments on the Lorenz system we used o =1.0X 1074,

Using the parameter values stated above, a search for
the minima of Eq. (4) in the parameter space a was con-
ducted using the NPSOL (Ref. 41) package. Since there is
no general method known for determining the absolute
minimum of a function using numerical methods, one
generally proceeds by finding the minima after iteration
for each of a large number of initial conditions, while at-
tempting to cover a large representation of the phase
space. In practice, one will usually find a number of local
minima, all of which have “basins of attraction’ of vary-
ing sizes. After a number of runs, one usually will gain
some intuition as to which regions of the parameter space
evolve to which local minima. When some confidence is
gained that a large region of the parameter space has
heen investizated, we label ibec minimum wath the lowest
cost function value the *“‘absolute” minimum. Of course,
generally speaking, one can never be sure that one has
bound the actual global minimum,

Using the time series for the Lorenz data and the pa-
rameter values we have just described, the NPSOL routine
was able to find a number of minims of the cost function
C(X,a). There values ranged over as much as two orders
of magnitude. The lowest value of the cost function
found was in the neighborhood of 1.87X 1073, as indicat-
ed in Table IV. In the preliminary analysis there were
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three minima which had almost this same value, A more
detailed analysis, however, found that after many itera-
tions of the search routine two of these minima actually
evolved into .the third. Using better error tolerances in
NPSOL, it was found that this point actually did have a
slightly lower minima. It should be noted that even
though the three minima had cost functions which agreed
very closely, their resulting values for the a’s were much
different. This is in k.eping with our observation that,
for & large range of parameter values around these mini-
ma, the cost function was very “flat” with respect to the
parameters, i.e., C(X,a) varied very little over a large
range of a’s. This has the unfortunate effect of causing
the iteration procedure to proceed very slowly, since the
minima were very shaliow, and a large number of itera-
tions were required to achieve the optimal solution. One
possible conclusion from this is that, if one were interest-
ed in a purely least-squares fit of the map to the data, any
of the parameter sets in this range were nearly as good as
the optimal solution.

After the analysis just described, we performed another
changing he X's changed to (0.5,0.3,0.2). These parame-
ter values weight the later iterates of the map more heavi-
ly, and correspond to trying to make the map predict far-
ther into the future. We did not impose the B, con-
straints on the Lorenz system, but used this system to ex-
plore the variations on the cost fu: tion and the quality
of our ability to reproduce the largest Lyapunov ex-
ponent as we changed the weights X, in the predictor.
The results of these minimization searches are also
presented in Table IV; both 6000 and 8000 points on the
attractor are used in our example. As can be seen, the
cost function for these minima are about 4 higher than
for the previous system, and this is to be expected since
the later iterates, which must be inherently less accurate,
now give a much larger contribution to the cost function.
In terms of relative fitting error, however, these minima
are still surprisingly low. The final parameter values, al-
though significantly different from the previous system,
are still similar enough to give the same general character
to the fitting function.

One noticeable difference between the two different
values of X's was in the fitting of the map using the
Lyapunov constraint. The iteration procedure for the
(0.5,0.3,0.2) system went far more quickly than for the
(0.8,0.1,0.1) system. This can probably be interpreted in
terms of the fact that if later iterates of the map are
weighted more heavily, then the parameters result in
more sensitivity of the map to the Lyapunov constraint,
which usually requires longer svslution times {0 manifesi
i’sclf for flows.

VL. SUMMARY AND FUTURE TASKS

In this paper we have given a set of procedures v'hich
one may use to process signals x (n), n=1,2, ..., having
a broadband power spectrum. Using numerically gen-
erated data from the Hénon map and from the Lorenz
equations we have also demonstrated explicitly the feasi-
bility of our procedures. Processing a signal means that
from the time series x(n) we do the following.

et
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. Find an integer-dimensional embedding space of time
Iagged d vectors

y(m)=(x(n)x(n+mr),...,x(n +r)),

tor on which the data evolves, The attractor has dimen-
sion d, which may be fractional. Choosing the integer
d >2d 1 is guaranteed to be sufficient for this purpose,
but smaller d may ofterd work.

Find invariants of the evolution y(1),y(2),...,y(N}in
R—specifically, the Lyapunov exponent spectrum
ApAy...,A; and selected optimum  moments
B,,B,,...,Bg, of the invariant density p(y), on the at-
tractor.

‘ Use these vectors y(n) and invariants to construct a
parametrized map of RY to itself y— F(y,a), which mini-

mizes a certain constrained least-squares cost function

based on the residual errors of a nonlinear predictor

L .
y(m+1)= 3 X, FXy(m—k+1)2),
k=]

involving iterates F* of the map.

The output of the signal processing is the map
F(y,a)—both its form and the parameters a—and the
coefficients X in the predictor.

A map F(y,a) and a predictor which give very small
least-squares residuals when evaluated on the data we call
reliable. We have explicitly demonstrated in this paper
that even a reliable F(y,a) does not necessarily reproduce
invariants such as the A, and the B, discussed by us.
The reason is that a least-squares tracking of a data set
y(n) by a map y(n +1)=F(y(n),a) does not necessarily
provide a good evaluation of the local tangent space map-
ping M, =03F;(y)/dy;. A map which is reliable and also
gives the correct invariants we call representational. Our
maps are representational because we constrain the
least-squares minimization by the invariants. A map
which closely tracks data but does not yield the dynami-
cal invariants misses the essential ingredients which clas-
sify or identify the dynamical system underlying the data.

Another way to state our constrained optimization
procedure is that the cost function to use in determining
the map should not be composed only of the square of the
residuals in the predictor. It should also contain terms
which measure the residuals in matching the invariants
determined by the data and the same quantity determined

- by the maps. NPSOL and other contemporary optimiza-
tion routines do essentially this by a combination of
Lagrange multiplier and quadratic penalty terms added

e mens mus

to ihic ieasi-squares cosi funciiou. This point of view sug-
gests that we should not focus on the size of C(X,u)
as our goodness of fit criterion but on C(X,a)
+3.,(A,%+3, (AB,)% In our Tables III and IV we
have reported the values of each of these quantities sepa-
rately, but the sum as noted should measure the merit of
our maps.

In practice, carrying out our signal processing program
raises a number of issues of importance in dynamical sys-
tems as well as in the present context. The first of these is
the determination of the dimension d of the embedding

which fully expose the geometric structure of the attrac-

space in which the phase-space reconstruction
x(n)—y(n) takes place, We have used the correlation
function Eq. (6), but the choice of a dimension at which
this stops changing is quite subjective. Establishing an
objective criterion would be most useful. Perhaps one of

‘the information theoretic criteria developed in statistics

for identifying the number of degrees of freedom in a data
set would provide a tool here.*? An objective criterion
for establishing the time delays r, would also be desir-
able.

Methods for determining the Lyapunov spectrum
Ay ...y Ay from the data are also quite important. These
are classifiers of the dynamical system and a representa-
tional map must reproduce them. This is not at all a new
issue as should be clear from the discussions in Sec. IIIL.
Our own work in this area, which will be reported in de-
tail in a subsequent paper, uses /ocal maps of the form of
our F(y,a) and fits the parameters a and o to the tangent
map at every time step. The local tangent map
M(a(n)), takes groups of phase-space points in the
neighborhood of the orbit point y(n) into groups around
y(n +1). The dependence of M on y is sensitive to the
variation of M over the neighborhood of phase-space
points. When one has short data sets and thus sparse
neighborhoods, this dependence on y gives a better ap-
proximation to M(y) than a local constant matrix.** The
eigenvalues of the product of the local M’s along the or-
bit yield the A,.

As should be clear from our discussion of the structure
of the parametrized map F(y,a), if we remain with our
general form (which we do not insist on), then properties
of g(y,y(n);a) are what we must address. Our choice in
this paper has been to use scalar products of y and y(n)
in forming g. These are insersitive to directional infor-
mation on the attractor. The structure of neighborhoods
of phase-space points near the orbit y(n) is not isotropic,
so much of the information in our data may be used in
our present choice of g. Since we want g to provide
direction sensitive weights, we might wish to build in
some of the local phase-space structure on the attractor.
Some of this information is contained in the correlation
function among points in the neighborhood of the orbit.
If an orbit point y(n) has Ny neighbors y#(n) within Vo,
the vorrelation function is

Ny
W,,(n)=7v‘— S rAm) —p(m)], [vEm—p(n)]; .
B gm=)
Following a suggestion of Fukunaga?? we would use the
local correlation matrix in our g({y,y(n);a) by making the
rreplacements

d
ly—y(n )|2—-»Uzl [y—y(n)],-W,j"(n)[y—y(n)],

and

d
y(a){y—=y(n)— 3 y(n) W,}"(n)[y =y(n)); .
Lj=1
This now emphasizes directions in phase space along the
attractor where the correlation is larger.
In addition to these improvements in our ability to per-
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form each element of auz signs! processing program, the
application of methi s estsblished lieve to laboratory and
field data would be guite productive. The applications
would be both to clossification by dynamical invariants of
observed broadband signels aud to prediction on those
signals. Further having a clear idea now of the geometric
setting in which the signal process.ag takes place in time
domain, we can begin exploration of these methods to
control of nonlinear systems.

Finally, there is the mutter of noise, extrinsic noise,
which contaminates our broadband signal x(n). Many
conventional methods for ideutifyipg signals in noise rely
on the distinct spectral characteristics of the twe. That
tool is absent for us, and we must use alternative tactics.
We do not have a contribution to this important issue
which we have tested out in any quantitative way. A nat-
ural framework will be the distinct dynamical charac-
teristics of noise and chaotic motion embodied in
differing d , (finite for a chaotic attractor and filling any
dimension for noise), invariant density p(y) (structured
for chactic time series and homogeneous for noise), and
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other similar attributes. We will report on our tested.
ideas in this matter in future articles.
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DDL(S) for Lorenz Model
d,=2.06; d=10
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» DDL(S) for New Lorenz Model
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DDL(S) for Vortex Dynamics
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